有对合的零清洁环

IF 0.4 4区 数学 Q4 MATHEMATICS
Jian Cui, Guoli Xia, Yiqiang Zhou
{"title":"有对合的零清洁环","authors":"Jian Cui, Guoli Xia, Yiqiang Zhou","doi":"10.1142/s1005386721000298","DOIUrl":null,"url":null,"abstract":"A [Formula: see text]-ring [Formula: see text] is called a nil [Formula: see text]-clean ring if every element of [Formula: see text] is a sum of a projection and a nilpotent. Nil [Formula: see text]-clean rings are the [Formula: see text]-version of nil-clean rings introduced by Diesl. This paper is about the nil [Formula: see text]-clean property of rings with emphasis on matrix rings. We show that a [Formula: see text]-ring [Formula: see text] is nil [Formula: see text]-clean if and only if [Formula: see text] is nil and [Formula: see text] is nil [Formula: see text]-clean. For a 2-primal [Formula: see text]-ring [Formula: see text], with the induced involution given by[Formula: see text], the nil [Formula: see text]-clean property of [Formula: see text] is completely reduced to that of [Formula: see text]. Consequently, [Formula: see text] is not a nil [Formula: see text]-clean ring for [Formula: see text], and [Formula: see text] is a nil [Formula: see text]-clean ring if and only if [Formula: see text] is nil, [Formula: see text]is a Boolean ring and [Formula: see text] for all [Formula: see text].","PeriodicalId":50958,"journal":{"name":"Algebra Colloquium","volume":"98 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nil-Clean Rings with Involution\",\"authors\":\"Jian Cui, Guoli Xia, Yiqiang Zhou\",\"doi\":\"10.1142/s1005386721000298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A [Formula: see text]-ring [Formula: see text] is called a nil [Formula: see text]-clean ring if every element of [Formula: see text] is a sum of a projection and a nilpotent. Nil [Formula: see text]-clean rings are the [Formula: see text]-version of nil-clean rings introduced by Diesl. This paper is about the nil [Formula: see text]-clean property of rings with emphasis on matrix rings. We show that a [Formula: see text]-ring [Formula: see text] is nil [Formula: see text]-clean if and only if [Formula: see text] is nil and [Formula: see text] is nil [Formula: see text]-clean. For a 2-primal [Formula: see text]-ring [Formula: see text], with the induced involution given by[Formula: see text], the nil [Formula: see text]-clean property of [Formula: see text] is completely reduced to that of [Formula: see text]. Consequently, [Formula: see text] is not a nil [Formula: see text]-clean ring for [Formula: see text], and [Formula: see text] is a nil [Formula: see text]-clean ring if and only if [Formula: see text] is nil, [Formula: see text]is a Boolean ring and [Formula: see text] for all [Formula: see text].\",\"PeriodicalId\":50958,\"journal\":{\"name\":\"Algebra Colloquium\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Colloquium\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386721000298\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Colloquium","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386721000298","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

如果[公式:见文本]的每个元素都是投影和幂零的和,则一个[公式:见文本]-环[公式:见文本]被称为nil[公式:见文本]-干净环。Nil[公式:见文本]-clean rings是[公式:见文本]- diesel引入的Nil -clean rings的版本。本文讨论了环的零[公式:见文]-洁净性,重点讨论了矩阵环。我们证明了[公式:见文]-环[公式:见文]为nil[公式:见文]-清洁当且仅当[公式:见文]为nil且[公式:见文]为nil[公式:见文]-清洁。对于一个2-原[公式:见文]-环[公式:见文],在[公式:见文]给出的诱导对合下,[公式:见文]的零[公式:见文]-洁净性质完全化约为[公式:见文]的零[公式:见文]性质。因此,[Formula: see text]不是nil [Formula: see text]-clean ring for [Formula: see text], [Formula: see text]是nil [Formula: see text]-clean ring当且仅当[Formula: see text]为nil, [Formula: see text]是布尔环,[Formula: see text]为所有[Formula: see text]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nil-Clean Rings with Involution
A [Formula: see text]-ring [Formula: see text] is called a nil [Formula: see text]-clean ring if every element of [Formula: see text] is a sum of a projection and a nilpotent. Nil [Formula: see text]-clean rings are the [Formula: see text]-version of nil-clean rings introduced by Diesl. This paper is about the nil [Formula: see text]-clean property of rings with emphasis on matrix rings. We show that a [Formula: see text]-ring [Formula: see text] is nil [Formula: see text]-clean if and only if [Formula: see text] is nil and [Formula: see text] is nil [Formula: see text]-clean. For a 2-primal [Formula: see text]-ring [Formula: see text], with the induced involution given by[Formula: see text], the nil [Formula: see text]-clean property of [Formula: see text] is completely reduced to that of [Formula: see text]. Consequently, [Formula: see text] is not a nil [Formula: see text]-clean ring for [Formula: see text], and [Formula: see text] is a nil [Formula: see text]-clean ring if and only if [Formula: see text] is nil, [Formula: see text]is a Boolean ring and [Formula: see text] for all [Formula: see text].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra Colloquium
Algebra Colloquium 数学-数学
CiteScore
0.60
自引率
0.00%
发文量
625
审稿时长
15.6 months
期刊介绍: Algebra Colloquium is an international mathematical journal founded at the beginning of 1994. It is edited by the Academy of Mathematics & Systems Science, Chinese Academy of Sciences, jointly with Suzhou University, and published quarterly in English in every March, June, September and December. Algebra Colloquium carries original research articles of high level in the field of pure and applied algebra. Papers from related areas which have applications to algebra are also considered for publication. This journal aims to reflect the latest developments in algebra and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信