{"title":"小复用距离蜂窝网络的区域频谱效率:一种代数方法","authors":"Hsin-An Hou, Li-Chun Wang","doi":"10.1109/WOCC.2017.7928997","DOIUrl":null,"url":null,"abstract":"In this paper we present an algebraic analytical approach to estimate area spectrum efficiency (ASE) of interference-limited cellular mobile systems with small reuse distance ratio. In an ultra-dense network (UDN), the co-channel inter-site distance is very small (e.g. 2 times of cell radius). However, to the best of our knowledge, an accurate performance framework for cellular mobile network with small number of co-channel inter-site distance ratio is rarely seen in the literature. To improve the accuracy of expression, we take interference signals from the all interfering BSs on two-dimension and area spectral efficiency (ASE) into account, and derive the close-form expression for the downlink signal-to-interference plus noise ratio (SINR) by Newton's generalized binomial equation and triangle identities of a base station (BS) geometry model. Based on the SINR expression, we further derive tight approximation formulas of downlink spectral efficiency (SE)s and ASE. Moreover, the SINR close-form expression and the tight approximation for SE and ASE with small reuse distance ratio are also presented and validated.","PeriodicalId":6471,"journal":{"name":"2017 26th Wireless and Optical Communication Conference (WOCC)","volume":"241 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Area spectral efficiency for cellular networks with small reuse distance: An algebraic approach\",\"authors\":\"Hsin-An Hou, Li-Chun Wang\",\"doi\":\"10.1109/WOCC.2017.7928997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present an algebraic analytical approach to estimate area spectrum efficiency (ASE) of interference-limited cellular mobile systems with small reuse distance ratio. In an ultra-dense network (UDN), the co-channel inter-site distance is very small (e.g. 2 times of cell radius). However, to the best of our knowledge, an accurate performance framework for cellular mobile network with small number of co-channel inter-site distance ratio is rarely seen in the literature. To improve the accuracy of expression, we take interference signals from the all interfering BSs on two-dimension and area spectral efficiency (ASE) into account, and derive the close-form expression for the downlink signal-to-interference plus noise ratio (SINR) by Newton's generalized binomial equation and triangle identities of a base station (BS) geometry model. Based on the SINR expression, we further derive tight approximation formulas of downlink spectral efficiency (SE)s and ASE. Moreover, the SINR close-form expression and the tight approximation for SE and ASE with small reuse distance ratio are also presented and validated.\",\"PeriodicalId\":6471,\"journal\":{\"name\":\"2017 26th Wireless and Optical Communication Conference (WOCC)\",\"volume\":\"241 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 26th Wireless and Optical Communication Conference (WOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WOCC.2017.7928997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 26th Wireless and Optical Communication Conference (WOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC.2017.7928997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Area spectral efficiency for cellular networks with small reuse distance: An algebraic approach
In this paper we present an algebraic analytical approach to estimate area spectrum efficiency (ASE) of interference-limited cellular mobile systems with small reuse distance ratio. In an ultra-dense network (UDN), the co-channel inter-site distance is very small (e.g. 2 times of cell radius). However, to the best of our knowledge, an accurate performance framework for cellular mobile network with small number of co-channel inter-site distance ratio is rarely seen in the literature. To improve the accuracy of expression, we take interference signals from the all interfering BSs on two-dimension and area spectral efficiency (ASE) into account, and derive the close-form expression for the downlink signal-to-interference plus noise ratio (SINR) by Newton's generalized binomial equation and triangle identities of a base station (BS) geometry model. Based on the SINR expression, we further derive tight approximation formulas of downlink spectral efficiency (SE)s and ASE. Moreover, the SINR close-form expression and the tight approximation for SE and ASE with small reuse distance ratio are also presented and validated.