光学系数测量使用散装活组织与光纤穿刺

Q4 Engineering
Haruna Nakazawa, Marika Doi, E. Ogawa, T. Arai
{"title":"光学系数测量使用散装活组织与光纤穿刺","authors":"Haruna Nakazawa, Marika Doi, E. Ogawa, T. Arai","doi":"10.11239/JSMBE.55ANNUAL.597","DOIUrl":null,"url":null,"abstract":"(one line blank) Abstract: Slicing sample preparation in tissue optical characteristic measurement may makes huge error over individual optical differences. We proposed the combination of light intensity measurement through an optical fiber puncturing into a bulk tissue varying detection numerical aperture and ray tracing calculation to avoid slicing degradation of living tissue. To reveal the characteristics of this measurement, optical coefficients of pig myocardium obtained by the IAD method with slicing living tissue sample preparation and proposed measurement method were compared. In the proposed method, a silica fiber installed in an18G needle was punctured up to the bottom of the myocardial bulk tissue to measure light intensity in the bulk tissue changing depth and numerical aperture. The author found that measured apparent attenuation coefficients tended to strongly depend on numerical aperture. The ray trace calculation explained the same numerical aperture tendency in above mentioned experimental result. Optical characteristics of sliced myocardial samples revealed temporal change due to dehydration.","PeriodicalId":39233,"journal":{"name":"Transactions of Japanese Society for Medical and Biological Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical coefficient measurements using bulk living tissue with optical fiber puncture\",\"authors\":\"Haruna Nakazawa, Marika Doi, E. Ogawa, T. Arai\",\"doi\":\"10.11239/JSMBE.55ANNUAL.597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"(one line blank) Abstract: Slicing sample preparation in tissue optical characteristic measurement may makes huge error over individual optical differences. We proposed the combination of light intensity measurement through an optical fiber puncturing into a bulk tissue varying detection numerical aperture and ray tracing calculation to avoid slicing degradation of living tissue. To reveal the characteristics of this measurement, optical coefficients of pig myocardium obtained by the IAD method with slicing living tissue sample preparation and proposed measurement method were compared. In the proposed method, a silica fiber installed in an18G needle was punctured up to the bottom of the myocardial bulk tissue to measure light intensity in the bulk tissue changing depth and numerical aperture. The author found that measured apparent attenuation coefficients tended to strongly depend on numerical aperture. The ray trace calculation explained the same numerical aperture tendency in above mentioned experimental result. Optical characteristics of sliced myocardial samples revealed temporal change due to dehydration.\",\"PeriodicalId\":39233,\"journal\":{\"name\":\"Transactions of Japanese Society for Medical and Biological Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of Japanese Society for Medical and Biological Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11239/JSMBE.55ANNUAL.597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Japanese Society for Medical and Biological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11239/JSMBE.55ANNUAL.597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要:切片样品制备在组织光学特性测量中可能会由于个体光学差异而产生巨大的误差。为了避免活体组织的切片降解,我们提出了通过光纤刺入散装组织进行光强测量,改变检测数值孔径和射线追踪计算相结合的方法。为了揭示该测量方法的特点,比较了采用切片活组织样品制备的IAD法获得的猪心肌光学系数和所提出的测量方法。该方法采用18g针头将二氧化硅纤维刺穿至心肌体组织底部,测量光强在体组织中的变化深度和数值孔径。结果表明,实测的视衰减系数与数值孔径有很大的关系。射线迹计算解释了上述实验结果中相同的数值孔径趋势。切片心肌样品的光学特征显示脱水引起的时间变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optical coefficient measurements using bulk living tissue with optical fiber puncture
(one line blank) Abstract: Slicing sample preparation in tissue optical characteristic measurement may makes huge error over individual optical differences. We proposed the combination of light intensity measurement through an optical fiber puncturing into a bulk tissue varying detection numerical aperture and ray tracing calculation to avoid slicing degradation of living tissue. To reveal the characteristics of this measurement, optical coefficients of pig myocardium obtained by the IAD method with slicing living tissue sample preparation and proposed measurement method were compared. In the proposed method, a silica fiber installed in an18G needle was punctured up to the bottom of the myocardial bulk tissue to measure light intensity in the bulk tissue changing depth and numerical aperture. The author found that measured apparent attenuation coefficients tended to strongly depend on numerical aperture. The ray trace calculation explained the same numerical aperture tendency in above mentioned experimental result. Optical characteristics of sliced myocardial samples revealed temporal change due to dehydration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信