基于压缩感知的混合模数大规模MIMO系统信道估计与开环训练设计

Khaled Ardah, Bruno Sokal, A. D. Almeida, M. Haardt
{"title":"基于压缩感知的混合模数大规模MIMO系统信道估计与开环训练设计","authors":"Khaled Ardah, Bruno Sokal, A. D. Almeida, M. Haardt","doi":"10.1109/ICASSP40776.2020.9054443","DOIUrl":null,"url":null,"abstract":"Channel estimation in hybrid analog-digital massive MIMO systems is a challenging problem due to the high channel dimension, low signal-to-noise ratio before beamforming, and reduced number of radio-frequency chains. Compressed sensing based algorithms have been adopted to address these challenges by leveraging the sparse nature of millimeter-wave MIMO channels. In compressed sensing-based methods, the training vectors should be designed carefully to guarantee recoverability. Although using random vectors has an overwhelming recoverability guarantee, it has been recently shown that an optimized update, which could be obtained so that the mutual coherence of the resulting sensing matrix is minimized, can improve the recoverability guarantee. In this paper, we propose an openloop hybrid analog-digital beam-training framework, where a given sensing matrix is decomposed into analog and digital beamformers. The given sensing matrix can be designed efficiently offline to reduce computational complexity. Simulation results show that the proposed training method achieves a lower mutual coherence and an improved channel estimation performance than the other benchmark methods.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"4597-4601"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Compressed Sensing Based Channel Estimation and Open-loop Training Design for Hybrid Analog-digital Massive MIMO Systems\",\"authors\":\"Khaled Ardah, Bruno Sokal, A. D. Almeida, M. Haardt\",\"doi\":\"10.1109/ICASSP40776.2020.9054443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Channel estimation in hybrid analog-digital massive MIMO systems is a challenging problem due to the high channel dimension, low signal-to-noise ratio before beamforming, and reduced number of radio-frequency chains. Compressed sensing based algorithms have been adopted to address these challenges by leveraging the sparse nature of millimeter-wave MIMO channels. In compressed sensing-based methods, the training vectors should be designed carefully to guarantee recoverability. Although using random vectors has an overwhelming recoverability guarantee, it has been recently shown that an optimized update, which could be obtained so that the mutual coherence of the resulting sensing matrix is minimized, can improve the recoverability guarantee. In this paper, we propose an openloop hybrid analog-digital beam-training framework, where a given sensing matrix is decomposed into analog and digital beamformers. The given sensing matrix can be designed efficiently offline to reduce computational complexity. Simulation results show that the proposed training method achieves a lower mutual coherence and an improved channel estimation performance than the other benchmark methods.\",\"PeriodicalId\":13127,\"journal\":{\"name\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"1 1\",\"pages\":\"4597-4601\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP40776.2020.9054443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9054443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在模数混合大规模MIMO系统中,由于信道维数高、波束形成前信噪比低、射频链数少等特点,信道估计是一个具有挑战性的问题。通过利用毫米波MIMO信道的稀疏特性,采用了基于压缩感知的算法来解决这些挑战。在基于压缩感知的方法中,必须仔细设计训练向量以保证可恢复性。虽然使用随机向量具有压倒性的可恢复性保证,但最近的研究表明,可以获得优化更新,使所得传感矩阵的相互相干性最小化,可以提高可恢复性保证。在本文中,我们提出了一个开环混合模拟-数字波束训练框架,其中给定的传感矩阵被分解为模拟和数字波束形成器。给定的传感矩阵可以离线有效地设计,以降低计算复杂度。仿真结果表明,该训练方法具有较低的相互相干性和较好的信道估计性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compressed Sensing Based Channel Estimation and Open-loop Training Design for Hybrid Analog-digital Massive MIMO Systems
Channel estimation in hybrid analog-digital massive MIMO systems is a challenging problem due to the high channel dimension, low signal-to-noise ratio before beamforming, and reduced number of radio-frequency chains. Compressed sensing based algorithms have been adopted to address these challenges by leveraging the sparse nature of millimeter-wave MIMO channels. In compressed sensing-based methods, the training vectors should be designed carefully to guarantee recoverability. Although using random vectors has an overwhelming recoverability guarantee, it has been recently shown that an optimized update, which could be obtained so that the mutual coherence of the resulting sensing matrix is minimized, can improve the recoverability guarantee. In this paper, we propose an openloop hybrid analog-digital beam-training framework, where a given sensing matrix is decomposed into analog and digital beamformers. The given sensing matrix can be designed efficiently offline to reduce computational complexity. Simulation results show that the proposed training method achieves a lower mutual coherence and an improved channel estimation performance than the other benchmark methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信