通过选票定理,在接近临界的Erdős-Rényi图中出现异常大的组件

IF 0.9 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Umberto De Ambroggio, Matthew I. Roberts
{"title":"通过选票定理,在接近临界的Erdős-Rényi图中出现异常大的组件","authors":"Umberto De Ambroggio, Matthew I. Roberts","doi":"10.1017/s0963548321000584","DOIUrl":null,"url":null,"abstract":"\n We consider the near-critical Erdős–Rényi random graph G(n, p) and provide a new probabilistic proof of the fact that, when p is of the form \n \n \n \n$p=p(n)=1/n+\\lambda/n^{4/3}$\n\n \n and A is large,\n\n \n \n \n\\begin{equation*}\\mathbb{P}(|\\mathcal{C}_{\\max}|>An^{2/3})\\asymp A^{-3/2}e^{-\\frac{A^3}{8}+\\frac{\\lambda A^2}{2}-\\frac{\\lambda^2A}{2}},\\end{equation*}\n\n \n where \n \n \n \n$\\mathcal{C}_{\\max}$\n\n \n is the largest connected component of the graph. Our result allows A and \n \n \n \n$\\lambda$\n\n \n to depend on n. While this result is already known, our proof relies only on conceptual and adaptable tools such as ballot theorems, whereas the existing proof relies on a combinatorial formula specific to Erdős–Rényi graphs, together with analytic estimates.","PeriodicalId":10513,"journal":{"name":"Combinatorics, Probability & Computing","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Unusually large components in near-critical Erdős-Rényi graphs via ballot theorems\",\"authors\":\"Umberto De Ambroggio, Matthew I. Roberts\",\"doi\":\"10.1017/s0963548321000584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We consider the near-critical Erdős–Rényi random graph G(n, p) and provide a new probabilistic proof of the fact that, when p is of the form \\n \\n \\n \\n$p=p(n)=1/n+\\\\lambda/n^{4/3}$\\n\\n \\n and A is large,\\n\\n \\n \\n \\n\\\\begin{equation*}\\\\mathbb{P}(|\\\\mathcal{C}_{\\\\max}|>An^{2/3})\\\\asymp A^{-3/2}e^{-\\\\frac{A^3}{8}+\\\\frac{\\\\lambda A^2}{2}-\\\\frac{\\\\lambda^2A}{2}},\\\\end{equation*}\\n\\n \\n where \\n \\n \\n \\n$\\\\mathcal{C}_{\\\\max}$\\n\\n \\n is the largest connected component of the graph. Our result allows A and \\n \\n \\n \\n$\\\\lambda$\\n\\n \\n to depend on n. While this result is already known, our proof relies only on conceptual and adaptable tools such as ballot theorems, whereas the existing proof relies on a combinatorial formula specific to Erdős–Rényi graphs, together with analytic estimates.\",\"PeriodicalId\":10513,\"journal\":{\"name\":\"Combinatorics, Probability & Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability & Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0963548321000584\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability & Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0963548321000584","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 7

摘要

我们考虑近临界Erdős-Rényi随机图G(n, p),并提供了一个新的概率证明,证明当p的形式为$p=p(n)=1/n+\lambda/n^{4/3}$且a很大时,\begin{equation*}\mathbb{P}(|\mathcal{C}_{\max}|>An^{2/3})\asymp A^{-3/2}e^{-\frac{A^3}{8}+\frac{\lambda A^2}{2}-\frac{\lambda^2A}{2}},\end{equation*}其中$\mathcal{C}_{\max}$是图的最大连接分量。我们的结果允许A和$\lambda$依赖于n。虽然这个结果是已知的,但我们的证明只依赖于概念性和适应性的工具,如选票定理,而现有的证明依赖于Erdős-Rényi图特定的组合公式,以及分析估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unusually large components in near-critical Erdős-Rényi graphs via ballot theorems
We consider the near-critical Erdős–Rényi random graph G(n, p) and provide a new probabilistic proof of the fact that, when p is of the form $p=p(n)=1/n+\lambda/n^{4/3}$ and A is large, \begin{equation*}\mathbb{P}(|\mathcal{C}_{\max}|>An^{2/3})\asymp A^{-3/2}e^{-\frac{A^3}{8}+\frac{\lambda A^2}{2}-\frac{\lambda^2A}{2}},\end{equation*} where $\mathcal{C}_{\max}$ is the largest connected component of the graph. Our result allows A and $\lambda$ to depend on n. While this result is already known, our proof relies only on conceptual and adaptable tools such as ballot theorems, whereas the existing proof relies on a combinatorial formula specific to Erdős–Rényi graphs, together with analytic estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorics, Probability & Computing
Combinatorics, Probability & Computing 数学-计算机:理论方法
CiteScore
2.40
自引率
11.10%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Published bimonthly, Combinatorics, Probability & Computing is devoted to the three areas of combinatorics, probability theory and theoretical computer science. Topics covered include classical and algebraic graph theory, extremal set theory, matroid theory, probabilistic methods and random combinatorial structures; combinatorial probability and limit theorems for random combinatorial structures; the theory of algorithms (including complexity theory), randomised algorithms, probabilistic analysis of algorithms, computational learning theory and optimisation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信