离心泵液滴剪切效应模型的评价

Ramin Dabirian, S. Cui, I. Gavrielatos, R. Mohan, O. Shoham
{"title":"离心泵液滴剪切效应模型的评价","authors":"Ramin Dabirian, S. Cui, I. Gavrielatos, R. Mohan, O. Shoham","doi":"10.1115/FEDSM2018-83318","DOIUrl":null,"url":null,"abstract":"During the process of petroleum production and transportation, equipment such as pumps and chokes will cause shear effects which break the dispersed droplets into smaller size. The smaller droplets will influence the separator process significantly and the droplet size distribution has become a critical criterion for separator design. In order to have a better understanding of the separation efficiency, estimation of the dispersed-phase droplet size distribution is very important. The objective of this paper is to qualitatively and quantitatively investigate the effect of shear imparted on oil-water flow by centrifugal pump.\n This paper presents available published models for the calculation of droplet size distribution caused by different production equipment. Also detailed experimental data for droplet size distribution downstream of a centrifugal pump are presented. Rosin-Rammler and Log-Normal Distributions utilizing dmax Pereyra (2011) model as well as dmin Kouba (2003) model are used in order to evaluate the best fit distribution function to simulate the cumulative droplet size distribution. The results confirm that applying dmax Pereyra (2011) model leads to Rosin-Rammler distribution is much closer to the experimental data for low shear conditions, while the Log-Normal distribution shows better performance for higher shear rates. Furthermore, the predictions of Modified Kouba (2003) dmin model show good results for predicting the droplet distribution in centrifugal pump, and even better predictions under various ranges of experiments are achieved with manipulating cumulative percentage at minimum droplet diameter F(Dmin).","PeriodicalId":23480,"journal":{"name":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","volume":"177 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Evaluation of Models for Droplet Shear Effect of Centrifugal Pump\",\"authors\":\"Ramin Dabirian, S. Cui, I. Gavrielatos, R. Mohan, O. Shoham\",\"doi\":\"10.1115/FEDSM2018-83318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the process of petroleum production and transportation, equipment such as pumps and chokes will cause shear effects which break the dispersed droplets into smaller size. The smaller droplets will influence the separator process significantly and the droplet size distribution has become a critical criterion for separator design. In order to have a better understanding of the separation efficiency, estimation of the dispersed-phase droplet size distribution is very important. The objective of this paper is to qualitatively and quantitatively investigate the effect of shear imparted on oil-water flow by centrifugal pump.\\n This paper presents available published models for the calculation of droplet size distribution caused by different production equipment. Also detailed experimental data for droplet size distribution downstream of a centrifugal pump are presented. Rosin-Rammler and Log-Normal Distributions utilizing dmax Pereyra (2011) model as well as dmin Kouba (2003) model are used in order to evaluate the best fit distribution function to simulate the cumulative droplet size distribution. The results confirm that applying dmax Pereyra (2011) model leads to Rosin-Rammler distribution is much closer to the experimental data for low shear conditions, while the Log-Normal distribution shows better performance for higher shear rates. Furthermore, the predictions of Modified Kouba (2003) dmin model show good results for predicting the droplet distribution in centrifugal pump, and even better predictions under various ranges of experiments are achieved with manipulating cumulative percentage at minimum droplet diameter F(Dmin).\",\"PeriodicalId\":23480,\"journal\":{\"name\":\"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl\",\"volume\":\"177 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/FEDSM2018-83318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/FEDSM2018-83318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在石油生产和运输过程中,泵和节流器等设备会产生剪切作用,使分散的液滴破碎成更小的尺寸。液滴的大小对分离过程的影响较大,液滴的大小分布已成为分离器设计的重要依据。为了更好地了解分离效率,分散相液滴粒径分布的估计是非常重要的。本文的目的是定性和定量地研究离心泵传递的剪切对油水流动的影响。本文介绍了不同生产设备引起的液滴粒径分布的计算模型。并给出了离心泵下游液滴粒径分布的详细实验数据。利用dmax Pereyra(2011)模型的Rosin-Rammler和Log-Normal distribution以及dmin Kouba(2003)模型来评估模拟累积液滴粒径分布的最佳拟合分布函数。结果证实,应用dmax Pereyra(2011)模型,在低剪切条件下,松香-拉姆勒分布更接近实验数据,而在高剪切速率下,对数正态分布表现出更好的性能。此外,修正Kouba (2003) dmin模型对离心泵内液滴分布的预测效果较好,并且在最小液滴直径F(dmin)下操纵累积百分比可以在各种实验范围内实现更好的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of Models for Droplet Shear Effect of Centrifugal Pump
During the process of petroleum production and transportation, equipment such as pumps and chokes will cause shear effects which break the dispersed droplets into smaller size. The smaller droplets will influence the separator process significantly and the droplet size distribution has become a critical criterion for separator design. In order to have a better understanding of the separation efficiency, estimation of the dispersed-phase droplet size distribution is very important. The objective of this paper is to qualitatively and quantitatively investigate the effect of shear imparted on oil-water flow by centrifugal pump. This paper presents available published models for the calculation of droplet size distribution caused by different production equipment. Also detailed experimental data for droplet size distribution downstream of a centrifugal pump are presented. Rosin-Rammler and Log-Normal Distributions utilizing dmax Pereyra (2011) model as well as dmin Kouba (2003) model are used in order to evaluate the best fit distribution function to simulate the cumulative droplet size distribution. The results confirm that applying dmax Pereyra (2011) model leads to Rosin-Rammler distribution is much closer to the experimental data for low shear conditions, while the Log-Normal distribution shows better performance for higher shear rates. Furthermore, the predictions of Modified Kouba (2003) dmin model show good results for predicting the droplet distribution in centrifugal pump, and even better predictions under various ranges of experiments are achieved with manipulating cumulative percentage at minimum droplet diameter F(Dmin).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信