S. Bukosky, Nathan M. Anthony, Evan M. Bursch, S. Dev, M. Allen, Jeffery Allen
{"title":"基于构造律的二维结构定向粒子装配建模","authors":"S. Bukosky, Nathan M. Anthony, Evan M. Bursch, S. Dev, M. Allen, Jeffery Allen","doi":"10.1117/12.2633112","DOIUrl":null,"url":null,"abstract":"While two-dimensional (2D) structural photonic materials have led to many new innovations in the field of optics, the preferential alignment and assembly of colloidal particle arrays over large areas remains a challenge. Here, we develop a theoretical model based on the constructal law in order to describe this particle assembly behavior. The constructal model was then used to predict and tune the resulting particle alignment with and without the presence of an external driving force. Ultimately, this model provides a generalized framework that could be expanded upon to predict the self/directed-assembly of colloidal particles in a range of dynamically tunable and reconfigurable systems.","PeriodicalId":13820,"journal":{"name":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","volume":"48 1","pages":"121960A - 121960A-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling of directed particle assembly in two-dimensional structures based on constructal law\",\"authors\":\"S. Bukosky, Nathan M. Anthony, Evan M. Bursch, S. Dev, M. Allen, Jeffery Allen\",\"doi\":\"10.1117/12.2633112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While two-dimensional (2D) structural photonic materials have led to many new innovations in the field of optics, the preferential alignment and assembly of colloidal particle arrays over large areas remains a challenge. Here, we develop a theoretical model based on the constructal law in order to describe this particle assembly behavior. The constructal model was then used to predict and tune the resulting particle alignment with and without the presence of an external driving force. Ultimately, this model provides a generalized framework that could be expanded upon to predict the self/directed-assembly of colloidal particles in a range of dynamically tunable and reconfigurable systems.\",\"PeriodicalId\":13820,\"journal\":{\"name\":\"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)\",\"volume\":\"48 1\",\"pages\":\"121960A - 121960A-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2633112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2633112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling of directed particle assembly in two-dimensional structures based on constructal law
While two-dimensional (2D) structural photonic materials have led to many new innovations in the field of optics, the preferential alignment and assembly of colloidal particle arrays over large areas remains a challenge. Here, we develop a theoretical model based on the constructal law in order to describe this particle assembly behavior. The constructal model was then used to predict and tune the resulting particle alignment with and without the presence of an external driving force. Ultimately, this model provides a generalized framework that could be expanded upon to predict the self/directed-assembly of colloidal particles in a range of dynamically tunable and reconfigurable systems.