关于Walsh-Kaczmarz系统T均值的极大算子

IF 0.4 4区 数学 Q4 MATHEMATICS
N. Gogolashvili, G. Tephnadze
{"title":"关于Walsh-Kaczmarz系统T均值的极大算子","authors":"N. Gogolashvili, G. Tephnadze","doi":"10.1556/012.2021.58.1.1483","DOIUrl":null,"url":null,"abstract":"In this paper we prove and discuss some new (Hp, Lp,∞) type inequalities of the maximal operators of T means with monotone coefficients with respect to Walsh–Kaczmarz system. It is also proved that these results are the best possible in a special sense. As applications, both some well-known and new results are pointed out. In particular, we apply these results to prove a.e. convergence of such T means.","PeriodicalId":51187,"journal":{"name":"Studia Scientiarum Mathematicarum Hungarica","volume":"45 4 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"On the Maximal Operators of T Means with Respect to Walsh–Kaczmarz System\",\"authors\":\"N. Gogolashvili, G. Tephnadze\",\"doi\":\"10.1556/012.2021.58.1.1483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we prove and discuss some new (Hp, Lp,∞) type inequalities of the maximal operators of T means with monotone coefficients with respect to Walsh–Kaczmarz system. It is also proved that these results are the best possible in a special sense. As applications, both some well-known and new results are pointed out. In particular, we apply these results to prove a.e. convergence of such T means.\",\"PeriodicalId\":51187,\"journal\":{\"name\":\"Studia Scientiarum Mathematicarum Hungarica\",\"volume\":\"45 4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Scientiarum Mathematicarum Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1556/012.2021.58.1.1483\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Scientiarum Mathematicarum Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1556/012.2021.58.1.1483","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

摘要

本文证明并讨论了关于Walsh-Kaczmarz系统的单调系数T均值极大算子的一些新的(Hp, Lp,∞)型不等式。还证明了这些结果在特殊意义上是可能的最佳结果。作为应用,指出了一些已知的和新的结果。特别地,我们应用这些结果来证明这种T均值的a.e.收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Maximal Operators of T Means with Respect to Walsh–Kaczmarz System
In this paper we prove and discuss some new (Hp, Lp,∞) type inequalities of the maximal operators of T means with monotone coefficients with respect to Walsh–Kaczmarz system. It is also proved that these results are the best possible in a special sense. As applications, both some well-known and new results are pointed out. In particular, we apply these results to prove a.e. convergence of such T means.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: The journal publishes original research papers on various fields of mathematics, e.g., algebra, algebraic geometry, analysis, combinatorics, dynamical systems, geometry, mathematical logic, mathematical statistics, number theory, probability theory, set theory, statistical physics and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信