氮化钛上有机膦酸接枝细菌视紫红质薄膜的电子传输

D. Chryssikos, J. Dlugosch, Jerry A Fereiro, T. Kamiyama, M. Sheves, D. Cahen, M. Tornow
{"title":"氮化钛上有机膦酸接枝细菌视紫红质薄膜的电子传输","authors":"D. Chryssikos, J. Dlugosch, Jerry A Fereiro, T. Kamiyama, M. Sheves, D. Cahen, M. Tornow","doi":"10.1109/NANO51122.2021.9514351","DOIUrl":null,"url":null,"abstract":"Understanding the charge transport properties of proteins at the molecular scale is crucial for the development of novel bioelectronic devices. In this contribution, we report on the preparation and electrical characterization of thin films of bacteriorhodopsin grafted on the surface of titanium nitride via aminophosphonate linkers. Thickness analysis using atomic force microscopy revealed a protein film thickness of 8.2±1.5 nm, indicating the formation of a protein bilayer. Electrical measurements were carried out in the dry state, in a vertical arrangement with a eutectic gallium-indium (EGaIn) or an evaporated Ti/Au top contact. DC current-voltage measurements yielded comparable effective tunneling decay constants $\\beta\\sim 0.13\\mathrm{A}^{-1}$ for the EGaIn top contact and $\\sim 0.15\\mathrm{A}^{-1}$ for the Ti/Au top contact. The results presented herein may establish a novel platform for studying charge transport via protein molecules in a solid-state device configuration.","PeriodicalId":6791,"journal":{"name":"2021 IEEE 21st International Conference on Nanotechnology (NANO)","volume":"35 1","pages":"389-392"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electronic Transport Through Organophosphonate-Grafted Bacteriorhodopsin Films on Titanium Nitride\",\"authors\":\"D. Chryssikos, J. Dlugosch, Jerry A Fereiro, T. Kamiyama, M. Sheves, D. Cahen, M. Tornow\",\"doi\":\"10.1109/NANO51122.2021.9514351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the charge transport properties of proteins at the molecular scale is crucial for the development of novel bioelectronic devices. In this contribution, we report on the preparation and electrical characterization of thin films of bacteriorhodopsin grafted on the surface of titanium nitride via aminophosphonate linkers. Thickness analysis using atomic force microscopy revealed a protein film thickness of 8.2±1.5 nm, indicating the formation of a protein bilayer. Electrical measurements were carried out in the dry state, in a vertical arrangement with a eutectic gallium-indium (EGaIn) or an evaporated Ti/Au top contact. DC current-voltage measurements yielded comparable effective tunneling decay constants $\\\\beta\\\\sim 0.13\\\\mathrm{A}^{-1}$ for the EGaIn top contact and $\\\\sim 0.15\\\\mathrm{A}^{-1}$ for the Ti/Au top contact. The results presented herein may establish a novel platform for studying charge transport via protein molecules in a solid-state device configuration.\",\"PeriodicalId\":6791,\"journal\":{\"name\":\"2021 IEEE 21st International Conference on Nanotechnology (NANO)\",\"volume\":\"35 1\",\"pages\":\"389-392\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 21st International Conference on Nanotechnology (NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO51122.2021.9514351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Conference on Nanotechnology (NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO51122.2021.9514351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在分子尺度上了解蛋白质的电荷传输特性对于开发新型生物电子器件至关重要。在这篇文章中,我们报道了通过氨基膦酸盐连接剂在氮化钛表面接枝细菌视紫红质薄膜的制备和电特性。原子力显微镜厚度分析显示,蛋白质膜厚度为8.2±1.5 nm,表明形成了蛋白质双分子层。电测量是在干燥状态下进行的,在垂直排列的共晶镓铟(EGaIn)或蒸发的Ti/Au顶部触点。直流电流-电压测量得到了EGaIn顶触点的等效隧道衰减常数$\beta\sim 0.13\mathrm{A}^{-1}$和Ti/Au顶触点的等效隧道衰减常数$\sim 0.15\mathrm{A}^{-1}$。本文的研究结果可能为在固态器件结构中研究蛋白质分子的电荷传输建立一个新的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electronic Transport Through Organophosphonate-Grafted Bacteriorhodopsin Films on Titanium Nitride
Understanding the charge transport properties of proteins at the molecular scale is crucial for the development of novel bioelectronic devices. In this contribution, we report on the preparation and electrical characterization of thin films of bacteriorhodopsin grafted on the surface of titanium nitride via aminophosphonate linkers. Thickness analysis using atomic force microscopy revealed a protein film thickness of 8.2±1.5 nm, indicating the formation of a protein bilayer. Electrical measurements were carried out in the dry state, in a vertical arrangement with a eutectic gallium-indium (EGaIn) or an evaporated Ti/Au top contact. DC current-voltage measurements yielded comparable effective tunneling decay constants $\beta\sim 0.13\mathrm{A}^{-1}$ for the EGaIn top contact and $\sim 0.15\mathrm{A}^{-1}$ for the Ti/Au top contact. The results presented herein may establish a novel platform for studying charge transport via protein molecules in a solid-state device configuration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信