高斯粒子滤波

J. Kotecha, P. Djurić
{"title":"高斯粒子滤波","authors":"J. Kotecha, P. Djurić","doi":"10.1109/SSP.2001.955314","DOIUrl":null,"url":null,"abstract":"Sequential Bayesian estimation for dynamic state space models involves recursive estimation of hidden states based on noisy observations. The update of filtering and predictive densities for nonlinear models with non-Gaussian noise using Monte Carlo particle filtering methods is considered. The Gaussian particle filter (GPF) is introduced, where densities are approximated as a single Gaussian, an assumption which is also made in the extended Kalman filter (EKF). It is analytically shown that, if the Gaussian approximations hold true, the GPF minimizes the mean square error of the estimates asymptotically. The simulations results indicate that the filter has improved performance compared to the EKF, especially for highly nonlinear models where the EKF can diverge.","PeriodicalId":70952,"journal":{"name":"信号处理","volume":"57 1","pages":"429-432"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"861","resultStr":"{\"title\":\"Gaussian particle filtering\",\"authors\":\"J. Kotecha, P. Djurić\",\"doi\":\"10.1109/SSP.2001.955314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sequential Bayesian estimation for dynamic state space models involves recursive estimation of hidden states based on noisy observations. The update of filtering and predictive densities for nonlinear models with non-Gaussian noise using Monte Carlo particle filtering methods is considered. The Gaussian particle filter (GPF) is introduced, where densities are approximated as a single Gaussian, an assumption which is also made in the extended Kalman filter (EKF). It is analytically shown that, if the Gaussian approximations hold true, the GPF minimizes the mean square error of the estimates asymptotically. The simulations results indicate that the filter has improved performance compared to the EKF, especially for highly nonlinear models where the EKF can diverge.\",\"PeriodicalId\":70952,\"journal\":{\"name\":\"信号处理\",\"volume\":\"57 1\",\"pages\":\"429-432\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"861\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"信号处理\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2001.955314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"信号处理","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/SSP.2001.955314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 861

摘要

动态空间模型的顺序贝叶斯估计涉及基于噪声观测的隐状态递归估计。考虑了用蒙特卡罗粒子滤波方法对非高斯噪声非线性模型进行滤波和预测密度的更新。引入高斯粒子滤波(GPF),其中密度近似为单个高斯,这一假设也适用于扩展卡尔曼滤波(EKF)。分析表明,如果高斯近似成立,GPF使估计的均方误差渐近地最小化。仿真结果表明,与EKF相比,该滤波器具有更好的性能,特别是对于EKF可能发散的高度非线性模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gaussian particle filtering
Sequential Bayesian estimation for dynamic state space models involves recursive estimation of hidden states based on noisy observations. The update of filtering and predictive densities for nonlinear models with non-Gaussian noise using Monte Carlo particle filtering methods is considered. The Gaussian particle filter (GPF) is introduced, where densities are approximated as a single Gaussian, an assumption which is also made in the extended Kalman filter (EKF). It is analytically shown that, if the Gaussian approximations hold true, the GPF minimizes the mean square error of the estimates asymptotically. The simulations results indicate that the filter has improved performance compared to the EKF, especially for highly nonlinear models where the EKF can diverge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
5812
期刊介绍: Journal of Signal Processing is an academic journal supervised by China Association for Science and Technology and sponsored by China Institute of Electronics. The journal is an academic journal that reflects the latest research results and technological progress in the field of signal processing and related disciplines. It covers academic papers and review articles on new theories, new ideas, and new technologies in the field of signal processing. The journal aims to provide a platform for academic exchanges for scientific researchers and engineering and technical personnel engaged in basic research and applied research in signal processing, thereby promoting the development of information science and technology. At present, the journal has been included in the three major domestic core journal databases "China Science Citation Database (CSCD), China Science and Technology Core Journals (CSTPCD), Chinese Core Journals Overview" and Coaj. It is also included in many foreign databases such as Scopus, CSA, EBSCO host, INSPEC, JST, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信