高阶条件熵约束格子编码RVQ及其在金字塔图像编码中的应用

M. Khan
{"title":"高阶条件熵约束格子编码RVQ及其在金字塔图像编码中的应用","authors":"M. Khan","doi":"10.1109/SSP.2001.955325","DOIUrl":null,"url":null,"abstract":"This paper introduces an extension of conditional entropy-constrained residual vector quantization (CEC-RVQ) to include quantization cell shape gain. The method is referred to as conditional entropy-constrained trellis-coded RVQ (CEC-TCRVQ). The new design is based on coding image vectors by taking into account their 2D correlation and employing a higher order entropy model with a trellis structure. We employed CEC-TCRVQ to code image subbands at low bit rate. The CEC-TCRVQ coded images do well in term of preserving low-magnitude textures present in some images.","PeriodicalId":70952,"journal":{"name":"信号处理","volume":"21 1","pages":"472-475"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher order conditional entropy-constrained trellis-coded RVQ with application to pyramid image coding\",\"authors\":\"M. Khan\",\"doi\":\"10.1109/SSP.2001.955325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces an extension of conditional entropy-constrained residual vector quantization (CEC-RVQ) to include quantization cell shape gain. The method is referred to as conditional entropy-constrained trellis-coded RVQ (CEC-TCRVQ). The new design is based on coding image vectors by taking into account their 2D correlation and employing a higher order entropy model with a trellis structure. We employed CEC-TCRVQ to code image subbands at low bit rate. The CEC-TCRVQ coded images do well in term of preserving low-magnitude textures present in some images.\",\"PeriodicalId\":70952,\"journal\":{\"name\":\"信号处理\",\"volume\":\"21 1\",\"pages\":\"472-475\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"信号处理\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2001.955325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"信号处理","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/SSP.2001.955325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了条件熵约束残差矢量量化(CEC-RVQ)的一种扩展,使其包含量化单元形状增益。这种方法被称为条件熵约束格子编码RVQ (CEC-TCRVQ)。新的设计是基于编码图像矢量,考虑到它们的二维相关性,并采用具有网格结构的高阶熵模型。我们采用CEC-TCRVQ对低比特率的图像子带进行编码。CEC-TCRVQ编码图像在保留某些图像中存在的低幅度纹理方面表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher order conditional entropy-constrained trellis-coded RVQ with application to pyramid image coding
This paper introduces an extension of conditional entropy-constrained residual vector quantization (CEC-RVQ) to include quantization cell shape gain. The method is referred to as conditional entropy-constrained trellis-coded RVQ (CEC-TCRVQ). The new design is based on coding image vectors by taking into account their 2D correlation and employing a higher order entropy model with a trellis structure. We employed CEC-TCRVQ to code image subbands at low bit rate. The CEC-TCRVQ coded images do well in term of preserving low-magnitude textures present in some images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
5812
期刊介绍: Journal of Signal Processing is an academic journal supervised by China Association for Science and Technology and sponsored by China Institute of Electronics. The journal is an academic journal that reflects the latest research results and technological progress in the field of signal processing and related disciplines. It covers academic papers and review articles on new theories, new ideas, and new technologies in the field of signal processing. The journal aims to provide a platform for academic exchanges for scientific researchers and engineering and technical personnel engaged in basic research and applied research in signal processing, thereby promoting the development of information science and technology. At present, the journal has been included in the three major domestic core journal databases "China Science Citation Database (CSCD), China Science and Technology Core Journals (CSTPCD), Chinese Core Journals Overview" and Coaj. It is also included in many foreign databases such as Scopus, CSA, EBSCO host, INSPEC, JST, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信