{"title":"非消耗化石燃料供热、通风和生活热水供应综合系统","authors":"Z. Melikyan, S. Egnatosyan","doi":"10.11648/J.IJSE.20180201.17","DOIUrl":null,"url":null,"abstract":"Large use of different kinds of fossil fuels in gas, liquid, solid and other forms for heating, ventilating and domestic hot water supplying of houses and heat generation for industrial purposes, in contemporary conditions creates ecological and economical serious problems, contributes to global climate change and requires big efforts and means, as well as long periods, for implementation of expensive conventional heat supply systems. Mentioned problems become even greater because of systematical rise in prices of fossil fuels. The solving of the problem gets harder because of absence of appropriate technology for accomplishing heat generation and its supply without consuming of fossil fuel. The mentioned disadvantages force to develop new generation of heat production and consumption technologies that operate without usage of fossil fuel and simultaneously accomplishes ventilation and domestic hot water supply of houses. For this reason, the authors of this study have decided to develop a new type of heating, ventilation and domestic hot water supplying integrated system, which does not consume at all fossil fuels. The integrated system realized on example of a residential house with 432 m3 of volume. The study proves energy high efficiency and cost effectiveness of suggested system, as it allows to save 2660 m3 of fossil fuel per season. Comparison of data shows that specific cost of seasonal heating, referred to 1m2 of the building is 2.06 times less than for ordinary system.","PeriodicalId":14477,"journal":{"name":"International Journal of Systems Engineering","volume":"43 4 1","pages":"29"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fossil Fuels Non-Consuming Heating, Ventilation and Domestic Hot Water Supplying Integrated System\",\"authors\":\"Z. Melikyan, S. Egnatosyan\",\"doi\":\"10.11648/J.IJSE.20180201.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large use of different kinds of fossil fuels in gas, liquid, solid and other forms for heating, ventilating and domestic hot water supplying of houses and heat generation for industrial purposes, in contemporary conditions creates ecological and economical serious problems, contributes to global climate change and requires big efforts and means, as well as long periods, for implementation of expensive conventional heat supply systems. Mentioned problems become even greater because of systematical rise in prices of fossil fuels. The solving of the problem gets harder because of absence of appropriate technology for accomplishing heat generation and its supply without consuming of fossil fuel. The mentioned disadvantages force to develop new generation of heat production and consumption technologies that operate without usage of fossil fuel and simultaneously accomplishes ventilation and domestic hot water supply of houses. For this reason, the authors of this study have decided to develop a new type of heating, ventilation and domestic hot water supplying integrated system, which does not consume at all fossil fuels. The integrated system realized on example of a residential house with 432 m3 of volume. The study proves energy high efficiency and cost effectiveness of suggested system, as it allows to save 2660 m3 of fossil fuel per season. Comparison of data shows that specific cost of seasonal heating, referred to 1m2 of the building is 2.06 times less than for ordinary system.\",\"PeriodicalId\":14477,\"journal\":{\"name\":\"International Journal of Systems Engineering\",\"volume\":\"43 4 1\",\"pages\":\"29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.IJSE.20180201.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJSE.20180201.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fossil Fuels Non-Consuming Heating, Ventilation and Domestic Hot Water Supplying Integrated System
Large use of different kinds of fossil fuels in gas, liquid, solid and other forms for heating, ventilating and domestic hot water supplying of houses and heat generation for industrial purposes, in contemporary conditions creates ecological and economical serious problems, contributes to global climate change and requires big efforts and means, as well as long periods, for implementation of expensive conventional heat supply systems. Mentioned problems become even greater because of systematical rise in prices of fossil fuels. The solving of the problem gets harder because of absence of appropriate technology for accomplishing heat generation and its supply without consuming of fossil fuel. The mentioned disadvantages force to develop new generation of heat production and consumption technologies that operate without usage of fossil fuel and simultaneously accomplishes ventilation and domestic hot water supply of houses. For this reason, the authors of this study have decided to develop a new type of heating, ventilation and domestic hot water supplying integrated system, which does not consume at all fossil fuels. The integrated system realized on example of a residential house with 432 m3 of volume. The study proves energy high efficiency and cost effectiveness of suggested system, as it allows to save 2660 m3 of fossil fuel per season. Comparison of data shows that specific cost of seasonal heating, referred to 1m2 of the building is 2.06 times less than for ordinary system.