混沌半群作用对初始的敏感依赖

Peng Guan, Yun Qian
{"title":"混沌半群作用对初始的敏感依赖","authors":"Peng Guan, Yun Qian","doi":"10.1109/ICNC.2012.6234653","DOIUrl":null,"url":null,"abstract":"In this paper, let X a non—empty compact metric place and S a semi-group. By topological transitivity and sensitive dependence on the initial, we introduces a concept of Devaney's chaos. We prove that topologically strong mixing implies Devaney's chaos when semi-group S continuously acts on the compact metric space X. At the same time, we popularize the concept of sensitive dependence on initial.","PeriodicalId":87274,"journal":{"name":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","volume":"81 1","pages":"950-952"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sensitive dependence on initial of chaotic semi-group actions\",\"authors\":\"Peng Guan, Yun Qian\",\"doi\":\"10.1109/ICNC.2012.6234653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, let X a non—empty compact metric place and S a semi-group. By topological transitivity and sensitive dependence on the initial, we introduces a concept of Devaney's chaos. We prove that topologically strong mixing implies Devaney's chaos when semi-group S continuously acts on the compact metric space X. At the same time, we popularize the concept of sensitive dependence on initial.\",\"PeriodicalId\":87274,\"journal\":{\"name\":\"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications\",\"volume\":\"81 1\",\"pages\":\"950-952\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2012.6234653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文设X为非空紧度量位,S为半群。通过拓扑传递性和对初始的敏感依赖,引入了Devaney混沌的概念。证明了当半群S连续作用于紧度量空间x时,拓扑强混合隐含Devaney混沌,同时推广了对初始敏感依赖的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensitive dependence on initial of chaotic semi-group actions
In this paper, let X a non—empty compact metric place and S a semi-group. By topological transitivity and sensitive dependence on the initial, we introduces a concept of Devaney's chaos. We prove that topologically strong mixing implies Devaney's chaos when semi-group S continuously acts on the compact metric space X. At the same time, we popularize the concept of sensitive dependence on initial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信