{"title":"用分数阶Tikhonov方法辨识具有相容时间导数的扩散方程的逆源","authors":"Ha VO THİ THANH, Ngo Hung, N. Phuong","doi":"10.31197/atnaa.1079951","DOIUrl":null,"url":null,"abstract":"In this paper, we study inverse source for diffusion equation with conformable derivative: \n $CoD_{t}^{(\\gamma)}u - \\Delta u = \\Phi(t) \\mathcal{F}(x)$, where $0","PeriodicalId":7440,"journal":{"name":"Advances in the Theory of Nonlinear Analysis and its Application","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying inverse source for diffusion equation with conformable time derivative by Fractional Tikhonov method\",\"authors\":\"Ha VO THİ THANH, Ngo Hung, N. Phuong\",\"doi\":\"10.31197/atnaa.1079951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study inverse source for diffusion equation with conformable derivative: \\n $CoD_{t}^{(\\\\gamma)}u - \\\\Delta u = \\\\Phi(t) \\\\mathcal{F}(x)$, where $0\",\"PeriodicalId\":7440,\"journal\":{\"name\":\"Advances in the Theory of Nonlinear Analysis and its Application\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in the Theory of Nonlinear Analysis and its Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31197/atnaa.1079951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in the Theory of Nonlinear Analysis and its Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31197/atnaa.1079951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了具有相容导数的扩散方程的逆源:$CoD_{t}^{(\gamma)}u - \Delta u = \Phi(t) \mathcal{F}(x)$,其中$0
Identifying inverse source for diffusion equation with conformable time derivative by Fractional Tikhonov method
In this paper, we study inverse source for diffusion equation with conformable derivative:
$CoD_{t}^{(\gamma)}u - \Delta u = \Phi(t) \mathcal{F}(x)$, where $0