{"title":"时间序列信号分类的判别监督加权算法","authors":"E. Ramanujam, S. Padmavathi","doi":"10.4018/IJSKD.2021070101","DOIUrl":null,"url":null,"abstract":"Innovations and applicability of time series data mining techniques have significantly increased the researchers' interest in the problem of time series classification. Several algorithms have been proposed for this purpose categorized under shapelet, interval, motif, and whole series-based techniques. Among this, the bag-of-words technique, an extensive application of the text mining approach, performs well due to its simplicity and effectiveness. To extend the efficiency of the bag-of-words technique, this paper proposes a discriminate supervised weighted scheme to identify the characteristic and representative pattern of a class for efficient classification. This paper uses a modified weighted matrix that discriminates the representative and non-representative pattern which enables the interpretability in classification. Experimentation has been carried out to compare the performance of the proposed technique with state-of-the-art techniques in terms of accuracy and statistical significance.","PeriodicalId":13656,"journal":{"name":"Int. J. Sociotechnology Knowl. Dev.","volume":"209 1","pages":"1-16"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discriminate Supervised Weighted Scheme for the Classification of Time Series Signals\",\"authors\":\"E. Ramanujam, S. Padmavathi\",\"doi\":\"10.4018/IJSKD.2021070101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Innovations and applicability of time series data mining techniques have significantly increased the researchers' interest in the problem of time series classification. Several algorithms have been proposed for this purpose categorized under shapelet, interval, motif, and whole series-based techniques. Among this, the bag-of-words technique, an extensive application of the text mining approach, performs well due to its simplicity and effectiveness. To extend the efficiency of the bag-of-words technique, this paper proposes a discriminate supervised weighted scheme to identify the characteristic and representative pattern of a class for efficient classification. This paper uses a modified weighted matrix that discriminates the representative and non-representative pattern which enables the interpretability in classification. Experimentation has been carried out to compare the performance of the proposed technique with state-of-the-art techniques in terms of accuracy and statistical significance.\",\"PeriodicalId\":13656,\"journal\":{\"name\":\"Int. J. Sociotechnology Knowl. Dev.\",\"volume\":\"209 1\",\"pages\":\"1-16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Sociotechnology Knowl. Dev.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJSKD.2021070101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Sociotechnology Knowl. Dev.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSKD.2021070101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discriminate Supervised Weighted Scheme for the Classification of Time Series Signals
Innovations and applicability of time series data mining techniques have significantly increased the researchers' interest in the problem of time series classification. Several algorithms have been proposed for this purpose categorized under shapelet, interval, motif, and whole series-based techniques. Among this, the bag-of-words technique, an extensive application of the text mining approach, performs well due to its simplicity and effectiveness. To extend the efficiency of the bag-of-words technique, this paper proposes a discriminate supervised weighted scheme to identify the characteristic and representative pattern of a class for efficient classification. This paper uses a modified weighted matrix that discriminates the representative and non-representative pattern which enables the interpretability in classification. Experimentation has been carried out to compare the performance of the proposed technique with state-of-the-art techniques in terms of accuracy and statistical significance.