{"title":"颗粒磁系统的音频加热","authors":"B.E. Kashevsky, I.V. Prokhorov, S.B. Kashevsky","doi":"10.1016/j.cpart.2006.12.004","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents theoretical and experimental studies on the magnetodynamics and energy dissipation in suspensions of small ferromagnetic particles with magnetic hysteresis and mechanical mobility in an AC magnetic field. Energy absorption by particles suspended in a solid, liquid or gas environment and subjected to high frequency magnetic fields is of great interest for cancer treatment by hyperthermia, chemical technology, biotechnology and smart materials science.</p><p>Sub-micron needle-like γ-Fe<sub>2</sub>O<sub>3</sub> particles dispersed in liquid were subjected in this study to a 430<!--> <!-->Hz magnetic field with an intensity of up to 10<sup>5</sup> <!-->A/m. Dynamic magnetization loops were measured in parallel to the energy dissipated in the samples. Combined magnetomechanical dynamics of particle dispersions was simulated by using a chain-of-spheres model allowing for incoherent magnetic field reversal. In liquid dispersions, within the kilohertz frequency range, the mechanical mobility of particles does not interfere with their hysteretic magnetic reversal that makes heat release comparable to that observed with solids; for instance, in the present study using γ-Fe<sub>2</sub>O<sub>3</sub> particles in liquid subjected to 10<sup>4</sup> <!-->Hz field exhibited heat release rates from 250 up to 600<!--> <!-->W per 1<!--> <!-->cm<sup>3</sup> of the dry particle content.</p></div>","PeriodicalId":100239,"journal":{"name":"China Particuology","volume":"5 1","pages":"Pages 84-92"},"PeriodicalIF":0.0000,"publicationDate":"2007-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cpart.2006.12.004","citationCount":"7","resultStr":"{\"title\":\"Audio-frequency heating of particulate magnetic systems\",\"authors\":\"B.E. Kashevsky, I.V. Prokhorov, S.B. Kashevsky\",\"doi\":\"10.1016/j.cpart.2006.12.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents theoretical and experimental studies on the magnetodynamics and energy dissipation in suspensions of small ferromagnetic particles with magnetic hysteresis and mechanical mobility in an AC magnetic field. Energy absorption by particles suspended in a solid, liquid or gas environment and subjected to high frequency magnetic fields is of great interest for cancer treatment by hyperthermia, chemical technology, biotechnology and smart materials science.</p><p>Sub-micron needle-like γ-Fe<sub>2</sub>O<sub>3</sub> particles dispersed in liquid were subjected in this study to a 430<!--> <!-->Hz magnetic field with an intensity of up to 10<sup>5</sup> <!-->A/m. Dynamic magnetization loops were measured in parallel to the energy dissipated in the samples. Combined magnetomechanical dynamics of particle dispersions was simulated by using a chain-of-spheres model allowing for incoherent magnetic field reversal. In liquid dispersions, within the kilohertz frequency range, the mechanical mobility of particles does not interfere with their hysteretic magnetic reversal that makes heat release comparable to that observed with solids; for instance, in the present study using γ-Fe<sub>2</sub>O<sub>3</sub> particles in liquid subjected to 10<sup>4</sup> <!-->Hz field exhibited heat release rates from 250 up to 600<!--> <!-->W per 1<!--> <!-->cm<sup>3</sup> of the dry particle content.</p></div>\",\"PeriodicalId\":100239,\"journal\":{\"name\":\"China Particuology\",\"volume\":\"5 1\",\"pages\":\"Pages 84-92\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.cpart.2006.12.004\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China Particuology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1672251507000206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Particuology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1672251507000206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
摘要
本文对交流磁场中具有磁滞和机械迁移率的小铁磁颗粒悬浮液的磁动力学和能量耗散进行了理论和实验研究。悬浮在固体、液体或气体环境中并受到高频磁场影响的粒子对能量的吸收对于热疗、化学技术、生物技术和智能材料科学的癌症治疗具有重要意义。在本研究中,分散在液体中的亚微米针状γ-Fe2O3颗粒受到强度高达105 a /m的430 Hz磁场的影响。动态磁化回路与样品中的能量耗散平行测量。采用允许非相干磁场反转的球链模型模拟了粒子分散体的联合磁力动力学。在液体分散体中,在千赫兹频率范围内,粒子的机械迁移率不会干扰它们的磁滞反转,这使得热释放与在固体中观察到的情况相当;例如,在目前的研究中,使用γ-Fe2O3颗粒在104 Hz电场下的液体中显示出每1 cm3干燥颗粒含量的热释放率从250到600 W。
Audio-frequency heating of particulate magnetic systems
This paper presents theoretical and experimental studies on the magnetodynamics and energy dissipation in suspensions of small ferromagnetic particles with magnetic hysteresis and mechanical mobility in an AC magnetic field. Energy absorption by particles suspended in a solid, liquid or gas environment and subjected to high frequency magnetic fields is of great interest for cancer treatment by hyperthermia, chemical technology, biotechnology and smart materials science.
Sub-micron needle-like γ-Fe2O3 particles dispersed in liquid were subjected in this study to a 430 Hz magnetic field with an intensity of up to 105 A/m. Dynamic magnetization loops were measured in parallel to the energy dissipated in the samples. Combined magnetomechanical dynamics of particle dispersions was simulated by using a chain-of-spheres model allowing for incoherent magnetic field reversal. In liquid dispersions, within the kilohertz frequency range, the mechanical mobility of particles does not interfere with their hysteretic magnetic reversal that makes heat release comparable to that observed with solids; for instance, in the present study using γ-Fe2O3 particles in liquid subjected to 104 Hz field exhibited heat release rates from 250 up to 600 W per 1 cm3 of the dry particle content.