具有阈值和整流线性单元激活的神经网络的记忆容量

IF 1.9 Q1 MATHEMATICS, APPLIED
R. Vershynin
{"title":"具有阈值和整流线性单元激活的神经网络的记忆容量","authors":"R. Vershynin","doi":"10.1137/20m1314884","DOIUrl":null,"url":null,"abstract":"Overwhelming theoretical and empirical evidence shows that mildly overparametrized neural networks---those with more connections than the size of the training data---are often able to memorize the ...","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"19 1","pages":"1004-1033"},"PeriodicalIF":1.9000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Memory Capacity of Neural Networks with Threshold and Rectified Linear Unit Activations\",\"authors\":\"R. Vershynin\",\"doi\":\"10.1137/20m1314884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Overwhelming theoretical and empirical evidence shows that mildly overparametrized neural networks---those with more connections than the size of the training data---are often able to memorize the ...\",\"PeriodicalId\":74797,\"journal\":{\"name\":\"SIAM journal on mathematics of data science\",\"volume\":\"19 1\",\"pages\":\"1004-1033\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2020-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM journal on mathematics of data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/20m1314884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/20m1314884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 41

摘要

大量的理论和经验证据表明,轻度过度参数化的神经网络——那些连接数量超过训练数据规模的神经网络——通常能够记住……
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Memory Capacity of Neural Networks with Threshold and Rectified Linear Unit Activations
Overwhelming theoretical and empirical evidence shows that mildly overparametrized neural networks---those with more connections than the size of the training data---are often able to memorize the ...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信