生物物质动力学中的场论方法

L. T. Handoko
{"title":"生物物质动力学中的场论方法","authors":"L. T. Handoko","doi":"10.1142/S2010194512007945","DOIUrl":null,"url":null,"abstract":"A new approach to model the biomatter dynamics based on the field theory is presented. It is shown that some well known tools in field theory can be utilized to describe the physical phenomena in life matters, in particular at elementary biomatters like DNA and proteins. In this approach, the biomatter dynamics are represented as results of interactions among its elementary matters in the form of lagrangian. Starting from the lagrangian would provide stronger underlying theoretical consideration for further extension. Moreover, it also enables us to acquire rich physical observables using statistical mechanics instead of relying on the space-time dynamics from certain equation of motions which is not solvable due to its nonlinearities. Few examples from previous results are given and explained briefly.","PeriodicalId":8460,"journal":{"name":"arXiv: Other Quantitative Biology","volume":"12 1","pages":"66-72"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FIELD THEORY APPROACH IN THE DYNAMICS OF BIOMATTER\",\"authors\":\"L. T. Handoko\",\"doi\":\"10.1142/S2010194512007945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new approach to model the biomatter dynamics based on the field theory is presented. It is shown that some well known tools in field theory can be utilized to describe the physical phenomena in life matters, in particular at elementary biomatters like DNA and proteins. In this approach, the biomatter dynamics are represented as results of interactions among its elementary matters in the form of lagrangian. Starting from the lagrangian would provide stronger underlying theoretical consideration for further extension. Moreover, it also enables us to acquire rich physical observables using statistical mechanics instead of relying on the space-time dynamics from certain equation of motions which is not solvable due to its nonlinearities. Few examples from previous results are given and explained briefly.\",\"PeriodicalId\":8460,\"journal\":{\"name\":\"arXiv: Other Quantitative Biology\",\"volume\":\"12 1\",\"pages\":\"66-72\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Other Quantitative Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2010194512007945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Other Quantitative Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2010194512007945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于场论的生物物质动力学建模新方法。研究表明,场论中一些众所周知的工具可以用来描述生命物质中的物理现象,特别是在DNA和蛋白质等基本生物物质中。在这种方法中,生物物质动力学以拉格朗日量的形式表示为其基本物质之间相互作用的结果。从拉格朗日出发将为进一步的推广提供更强有力的基础理论考虑。此外,它还使我们能够利用统计力学获得丰富的物理观测值,而不是依赖于某些由于非线性而无法求解的运动方程的时空动力学。从以前的结果中给出了几个例子,并作了简要的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FIELD THEORY APPROACH IN THE DYNAMICS OF BIOMATTER
A new approach to model the biomatter dynamics based on the field theory is presented. It is shown that some well known tools in field theory can be utilized to describe the physical phenomena in life matters, in particular at elementary biomatters like DNA and proteins. In this approach, the biomatter dynamics are represented as results of interactions among its elementary matters in the form of lagrangian. Starting from the lagrangian would provide stronger underlying theoretical consideration for further extension. Moreover, it also enables us to acquire rich physical observables using statistical mechanics instead of relying on the space-time dynamics from certain equation of motions which is not solvable due to its nonlinearities. Few examples from previous results are given and explained briefly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信