基于深度学习的橄榄精准种植时间序列预测框架

M. Atef, Ahmed M. Khattab, E. Agamy, M. Khairy
{"title":"基于深度学习的橄榄精准种植时间序列预测框架","authors":"M. Atef, Ahmed M. Khattab, E. Agamy, M. Khairy","doi":"10.1109/MWSCAS47672.2021.9531929","DOIUrl":null,"url":null,"abstract":"In this paper, we present a time series forecasting framework that uses deep learning to predict the environmental attributes that affect the olive fruit farming. The proposed framework is composed of two phases: a data preprocessing phase and a prediction phase. In the prediction phase, we use both the Long-Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) deep learning approaches to develop two models for predicting the environmental attributes. We evaluate the performance of the framework using real-life agriculture data collected for twenty years from a Spanish olive grove. Our results show that proposed LSTM and GRU models achieve remarkable accuracy, measured through different metrics, in predicting the temperature and relative humidity for the upcoming year based on historical data. We further use the predicted temperature in calculating the degree-day metric used to define the development phases of the olive fruit fly. This allows for foreseeing the best times to apply the counter measures to prevent the outbreak of such a fatal pest that affects a major Mediterranean crop: olive.","PeriodicalId":6792,"journal":{"name":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"232 1","pages":"1062-1065"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Learning Based Time-Series Forecasting Framework for Olive Precision Farming\",\"authors\":\"M. Atef, Ahmed M. Khattab, E. Agamy, M. Khairy\",\"doi\":\"10.1109/MWSCAS47672.2021.9531929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a time series forecasting framework that uses deep learning to predict the environmental attributes that affect the olive fruit farming. The proposed framework is composed of two phases: a data preprocessing phase and a prediction phase. In the prediction phase, we use both the Long-Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) deep learning approaches to develop two models for predicting the environmental attributes. We evaluate the performance of the framework using real-life agriculture data collected for twenty years from a Spanish olive grove. Our results show that proposed LSTM and GRU models achieve remarkable accuracy, measured through different metrics, in predicting the temperature and relative humidity for the upcoming year based on historical data. We further use the predicted temperature in calculating the degree-day metric used to define the development phases of the olive fruit fly. This allows for foreseeing the best times to apply the counter measures to prevent the outbreak of such a fatal pest that affects a major Mediterranean crop: olive.\",\"PeriodicalId\":6792,\"journal\":{\"name\":\"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"volume\":\"232 1\",\"pages\":\"1062-1065\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS47672.2021.9531929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS47672.2021.9531929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一个时间序列预测框架,该框架使用深度学习来预测影响橄榄果种植的环境属性。该框架由两个阶段组成:数据预处理阶段和预测阶段。在预测阶段,我们使用长短期记忆(LSTM)和门控循环单元(GRU)深度学习方法来开发两种预测环境属性的模型。我们使用从西班牙橄榄林收集的20年来的真实农业数据来评估该框架的性能。我们的研究结果表明,LSTM和GRU模型在基于历史数据预测未来一年的温度和相对湿度方面取得了显著的准确性,通过不同的指标进行了测量。我们进一步使用预测的温度来计算用于定义橄榄果蝇发育阶段的度-天度量。这样就可以预见到最佳时机,以采取应对措施,防止这种致命害虫的爆发,这种害虫影响地中海的主要作物:橄榄。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Based Time-Series Forecasting Framework for Olive Precision Farming
In this paper, we present a time series forecasting framework that uses deep learning to predict the environmental attributes that affect the olive fruit farming. The proposed framework is composed of two phases: a data preprocessing phase and a prediction phase. In the prediction phase, we use both the Long-Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) deep learning approaches to develop two models for predicting the environmental attributes. We evaluate the performance of the framework using real-life agriculture data collected for twenty years from a Spanish olive grove. Our results show that proposed LSTM and GRU models achieve remarkable accuracy, measured through different metrics, in predicting the temperature and relative humidity for the upcoming year based on historical data. We further use the predicted temperature in calculating the degree-day metric used to define the development phases of the olive fruit fly. This allows for foreseeing the best times to apply the counter measures to prevent the outbreak of such a fatal pest that affects a major Mediterranean crop: olive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信