Jakah Jakah, D. Muslim, A. T. Mursito, Z. Zakaria, H. Nurohman
{"title":"玻璃质凝灰岩地阻性能的时间防御性及其在地面增强材料开发中的应用","authors":"Jakah Jakah, D. Muslim, A. T. Mursito, Z. Zakaria, H. Nurohman","doi":"10.14203/risetgeotam2021.v31.1149","DOIUrl":null,"url":null,"abstract":"Ground repair material is an essential part of the grounding system as a lightning rod to reduce the risk of lightning activity. Grounding repair materials consist of conductive and superconductive materials, commonly known as Ground Enhancement Materials (GEM). GEM has a low resistivity, very effectively supporting lightning shock energy to earth. Vitric tuff, a pyroclastic rock, is composed of an aluminosilicate (phyllosilicate) mineral group developed as a grounding improvement material. The primary purpose of this study was to determine the decrease in resistivity of vitric tuff in its development as a GEM. The research method consisted of field observations and laboratory experiments (treatment with chemical-physical activation and formulation with additives). The results showed that moisture content, SiO2/Al2O3 ratio (quartz and feldspar mineral/albite), clay mineral, crystal quality (impurities), carbon, and salt were influenced by vitric tuff resistivity. With the vitric tuff formulation and additives, the resistivity reduction is above 99%. Based on experiments, the best formulation of GEM made from tuff is 65% activated vitric tuff, 27% activated charcoal, 6% NaCl, and 2% Cement Material Cellulose. The formula produces a resistivity value of 0.0124 Ω-m, which is stable with time and meets GEM requirements (ρ ≤ 0.20 Ω-m). Riset Geologi dan Pertambangan Indonesian Journal of Geology and Mining Vol.31, No 2, pages 63–76 doi: 10.14203/risetgeotam2021.v31.1149","PeriodicalId":41045,"journal":{"name":"Riset Geologi dan Pertambangan","volume":"57 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Time Defendability of Ground Resistance Properties and Its Application of Vitric Tuff on the Development of Ground Enhancement Material\",\"authors\":\"Jakah Jakah, D. Muslim, A. T. Mursito, Z. Zakaria, H. Nurohman\",\"doi\":\"10.14203/risetgeotam2021.v31.1149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ground repair material is an essential part of the grounding system as a lightning rod to reduce the risk of lightning activity. Grounding repair materials consist of conductive and superconductive materials, commonly known as Ground Enhancement Materials (GEM). GEM has a low resistivity, very effectively supporting lightning shock energy to earth. Vitric tuff, a pyroclastic rock, is composed of an aluminosilicate (phyllosilicate) mineral group developed as a grounding improvement material. The primary purpose of this study was to determine the decrease in resistivity of vitric tuff in its development as a GEM. The research method consisted of field observations and laboratory experiments (treatment with chemical-physical activation and formulation with additives). The results showed that moisture content, SiO2/Al2O3 ratio (quartz and feldspar mineral/albite), clay mineral, crystal quality (impurities), carbon, and salt were influenced by vitric tuff resistivity. With the vitric tuff formulation and additives, the resistivity reduction is above 99%. Based on experiments, the best formulation of GEM made from tuff is 65% activated vitric tuff, 27% activated charcoal, 6% NaCl, and 2% Cement Material Cellulose. The formula produces a resistivity value of 0.0124 Ω-m, which is stable with time and meets GEM requirements (ρ ≤ 0.20 Ω-m). Riset Geologi dan Pertambangan Indonesian Journal of Geology and Mining Vol.31, No 2, pages 63–76 doi: 10.14203/risetgeotam2021.v31.1149\",\"PeriodicalId\":41045,\"journal\":{\"name\":\"Riset Geologi dan Pertambangan\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Riset Geologi dan Pertambangan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14203/risetgeotam2021.v31.1149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Riset Geologi dan Pertambangan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14203/risetgeotam2021.v31.1149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Time Defendability of Ground Resistance Properties and Its Application of Vitric Tuff on the Development of Ground Enhancement Material
Ground repair material is an essential part of the grounding system as a lightning rod to reduce the risk of lightning activity. Grounding repair materials consist of conductive and superconductive materials, commonly known as Ground Enhancement Materials (GEM). GEM has a low resistivity, very effectively supporting lightning shock energy to earth. Vitric tuff, a pyroclastic rock, is composed of an aluminosilicate (phyllosilicate) mineral group developed as a grounding improvement material. The primary purpose of this study was to determine the decrease in resistivity of vitric tuff in its development as a GEM. The research method consisted of field observations and laboratory experiments (treatment with chemical-physical activation and formulation with additives). The results showed that moisture content, SiO2/Al2O3 ratio (quartz and feldspar mineral/albite), clay mineral, crystal quality (impurities), carbon, and salt were influenced by vitric tuff resistivity. With the vitric tuff formulation and additives, the resistivity reduction is above 99%. Based on experiments, the best formulation of GEM made from tuff is 65% activated vitric tuff, 27% activated charcoal, 6% NaCl, and 2% Cement Material Cellulose. The formula produces a resistivity value of 0.0124 Ω-m, which is stable with time and meets GEM requirements (ρ ≤ 0.20 Ω-m). Riset Geologi dan Pertambangan Indonesian Journal of Geology and Mining Vol.31, No 2, pages 63–76 doi: 10.14203/risetgeotam2021.v31.1149