{"title":"不可定向4-流形的三切分","authors":"Maggie Miller, Patrick Naylor","doi":"10.1307/mmj/20216127","DOIUrl":null,"url":null,"abstract":"We study trisections of smooth, compact non-orientable 4-manifolds, and introduce trisections of non-orientable 4-manifolds with boundary. In particular, we prove a non-orientable analogue of a classical theorem of Laudenbach-Poenaru. As a consequence, trisection diagrams and Kirby diagrams of closed non-orientable 4-manifolds exist. We discuss how the theory of trisections may be adapted to the setting of non-orientable 4-manifolds with many examples.","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":"57 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Trisections of Nonorientable 4-Manifolds\",\"authors\":\"Maggie Miller, Patrick Naylor\",\"doi\":\"10.1307/mmj/20216127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study trisections of smooth, compact non-orientable 4-manifolds, and introduce trisections of non-orientable 4-manifolds with boundary. In particular, we prove a non-orientable analogue of a classical theorem of Laudenbach-Poenaru. As a consequence, trisection diagrams and Kirby diagrams of closed non-orientable 4-manifolds exist. We discuss how the theory of trisections may be adapted to the setting of non-orientable 4-manifolds with many examples.\",\"PeriodicalId\":49820,\"journal\":{\"name\":\"Michigan Mathematical Journal\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Michigan Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20216127\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Michigan Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20216127","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We study trisections of smooth, compact non-orientable 4-manifolds, and introduce trisections of non-orientable 4-manifolds with boundary. In particular, we prove a non-orientable analogue of a classical theorem of Laudenbach-Poenaru. As a consequence, trisection diagrams and Kirby diagrams of closed non-orientable 4-manifolds exist. We discuss how the theory of trisections may be adapted to the setting of non-orientable 4-manifolds with many examples.
期刊介绍:
The Michigan Mathematical Journal is available electronically through the Project Euclid web site. The electronic version is available free to all paid subscribers. The Journal must receive from institutional subscribers a list of Internet Protocol Addresses in order for members of their institutions to have access to the online version of the Journal.