不可定向4-流形的三切分

Pub Date : 2020-10-14 DOI:10.1307/mmj/20216127
Maggie Miller, Patrick Naylor
{"title":"不可定向4-流形的三切分","authors":"Maggie Miller, Patrick Naylor","doi":"10.1307/mmj/20216127","DOIUrl":null,"url":null,"abstract":"We study trisections of smooth, compact non-orientable 4-manifolds, and introduce trisections of non-orientable 4-manifolds with boundary. In particular, we prove a non-orientable analogue of a classical theorem of Laudenbach-Poenaru. As a consequence, trisection diagrams and Kirby diagrams of closed non-orientable 4-manifolds exist. We discuss how the theory of trisections may be adapted to the setting of non-orientable 4-manifolds with many examples.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Trisections of Nonorientable 4-Manifolds\",\"authors\":\"Maggie Miller, Patrick Naylor\",\"doi\":\"10.1307/mmj/20216127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study trisections of smooth, compact non-orientable 4-manifolds, and introduce trisections of non-orientable 4-manifolds with boundary. In particular, we prove a non-orientable analogue of a classical theorem of Laudenbach-Poenaru. As a consequence, trisection diagrams and Kirby diagrams of closed non-orientable 4-manifolds exist. We discuss how the theory of trisections may be adapted to the setting of non-orientable 4-manifolds with many examples.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20216127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20216127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究光滑紧致非定向4-流形的三等分,并引入具有边界的非定向4-流形的三等分。特别地,我们证明了Laudenbach-Poenaru经典定理的一个非定向类比。因此,存在闭合不可定向4流形的三切图和Kirby图。我们用许多例子讨论了如何将三分理论应用于非定向4流形的设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Trisections of Nonorientable 4-Manifolds
We study trisections of smooth, compact non-orientable 4-manifolds, and introduce trisections of non-orientable 4-manifolds with boundary. In particular, we prove a non-orientable analogue of a classical theorem of Laudenbach-Poenaru. As a consequence, trisection diagrams and Kirby diagrams of closed non-orientable 4-manifolds exist. We discuss how the theory of trisections may be adapted to the setting of non-orientable 4-manifolds with many examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信