使用细胞形态测定法对三维图像中的亚细胞模式进行分类

Eduardo Henrique Silva, Jefferson R. Souza, B. Travençolo
{"title":"使用细胞形态测定法对三维图像中的亚细胞模式进行分类","authors":"Eduardo Henrique Silva, Jefferson R. Souza, B. Travençolo","doi":"10.22456/2175-2745.80598","DOIUrl":null,"url":null,"abstract":"This paper presents a methodology for the classification of subcellular patterns by the extraction of cytomorphometric features in 3D isosurfaces. In order to validate the proposal, we used a database of 3D images of HeLa cells with nine classes. For each cell, several morphological attributes were extracted based on its isosurface. Using the Quadratic Discriminant Analysis (QDA) classifier with the hybrid attribute selector, we achieved 97.59 of accuracy and F1-score of 0.9757 when classifying the subcellular patterns.","PeriodicalId":82472,"journal":{"name":"Research initiative, treatment action : RITA","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of cytomorphometry for classification of subcellular patterns in 3D images\",\"authors\":\"Eduardo Henrique Silva, Jefferson R. Souza, B. Travençolo\",\"doi\":\"10.22456/2175-2745.80598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a methodology for the classification of subcellular patterns by the extraction of cytomorphometric features in 3D isosurfaces. In order to validate the proposal, we used a database of 3D images of HeLa cells with nine classes. For each cell, several morphological attributes were extracted based on its isosurface. Using the Quadratic Discriminant Analysis (QDA) classifier with the hybrid attribute selector, we achieved 97.59 of accuracy and F1-score of 0.9757 when classifying the subcellular patterns.\",\"PeriodicalId\":82472,\"journal\":{\"name\":\"Research initiative, treatment action : RITA\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research initiative, treatment action : RITA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22456/2175-2745.80598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research initiative, treatment action : RITA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22456/2175-2745.80598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种方法,为亚细胞模式的分类提取细胞形态特征的三维等值面。为了验证这一建议,我们使用了HeLa细胞的9类三维图像数据库。对于每个细胞,基于其等值面提取若干形态属性。采用混合属性选择器的二次判别分析(Quadratic Discriminant Analysis, QDA)分类器对亚细胞模式进行分类,准确率达到97.59,f1得分为0.9757。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Use of cytomorphometry for classification of subcellular patterns in 3D images
This paper presents a methodology for the classification of subcellular patterns by the extraction of cytomorphometric features in 3D isosurfaces. In order to validate the proposal, we used a database of 3D images of HeLa cells with nine classes. For each cell, several morphological attributes were extracted based on its isosurface. Using the Quadratic Discriminant Analysis (QDA) classifier with the hybrid attribute selector, we achieved 97.59 of accuracy and F1-score of 0.9757 when classifying the subcellular patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信