超声深度成像的硬件和算法

Ivan Dokmanić, I. Tashev
{"title":"超声深度成像的硬件和算法","authors":"Ivan Dokmanić, I. Tashev","doi":"10.1109/ICASSP.2014.6854897","DOIUrl":null,"url":null,"abstract":"Depth imaging is commonly based on light. For example, LIDAR and Kinect use infrared light, while stereo cameras use visible light. These systems require hardware operating at high sampling frequencies, precise calibration, and they dissipate significant power. In this paper, we investigate the potential of ultrasound for image and depth acquisition, with applications to human-computer interaction and skeletal tracking in mind. We use a loudspeaker array and a microphone array to sense the scene. We discuss a technique for offline loudspeaker beamforming (commonly used for microphone beamforming) which enables us to significantly increase the frame rate. Further, we propose a sound-source-localization-based method for computing the depth image, giving a substantial improvement over the näıve time-of-flight approach. We designed inexpensive hardware with eight elements per array to obtain both the depth and the intensity images. Even with this limited number of transducers we obtain promising experimental results.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"19 1","pages":"6702-6706"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Hardware and algorithms for ultrasonic depth imaging\",\"authors\":\"Ivan Dokmanić, I. Tashev\",\"doi\":\"10.1109/ICASSP.2014.6854897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Depth imaging is commonly based on light. For example, LIDAR and Kinect use infrared light, while stereo cameras use visible light. These systems require hardware operating at high sampling frequencies, precise calibration, and they dissipate significant power. In this paper, we investigate the potential of ultrasound for image and depth acquisition, with applications to human-computer interaction and skeletal tracking in mind. We use a loudspeaker array and a microphone array to sense the scene. We discuss a technique for offline loudspeaker beamforming (commonly used for microphone beamforming) which enables us to significantly increase the frame rate. Further, we propose a sound-source-localization-based method for computing the depth image, giving a substantial improvement over the näıve time-of-flight approach. We designed inexpensive hardware with eight elements per array to obtain both the depth and the intensity images. Even with this limited number of transducers we obtain promising experimental results.\",\"PeriodicalId\":6545,\"journal\":{\"name\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"19 1\",\"pages\":\"6702-6706\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2014.6854897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6854897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

深度成像通常基于光。例如,激光雷达和Kinect使用红外光,而立体摄像机使用可见光。这些系统需要硬件在高采样频率下工作,精确校准,并且它们消耗大量功率。在本文中,我们研究了超声在图像和深度采集方面的潜力,并将其应用于人机交互和骨骼跟踪。我们使用扬声器阵列和麦克风阵列来感知现场。我们讨论了一种离线扬声器波束形成技术(通常用于麦克风波束形成),使我们能够显着提高帧率。此外,我们提出了一种基于声源定位的深度图像计算方法,与näıve飞行时间方法相比有了实质性的改进。我们设计了价格低廉的硬件,每个阵列有8个元素,以获得深度和强度图像。即使换能器数量有限,我们也获得了有希望的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hardware and algorithms for ultrasonic depth imaging
Depth imaging is commonly based on light. For example, LIDAR and Kinect use infrared light, while stereo cameras use visible light. These systems require hardware operating at high sampling frequencies, precise calibration, and they dissipate significant power. In this paper, we investigate the potential of ultrasound for image and depth acquisition, with applications to human-computer interaction and skeletal tracking in mind. We use a loudspeaker array and a microphone array to sense the scene. We discuss a technique for offline loudspeaker beamforming (commonly used for microphone beamforming) which enables us to significantly increase the frame rate. Further, we propose a sound-source-localization-based method for computing the depth image, giving a substantial improvement over the näıve time-of-flight approach. We designed inexpensive hardware with eight elements per array to obtain both the depth and the intensity images. Even with this limited number of transducers we obtain promising experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信