通过依赖于电子温度的深势分子动力学模拟热致密物质

Yuzhi Zhang, Chang Gao, Qianrui Liu, Linfeng Zhang, Han Wang, Mohan Chen
{"title":"通过依赖于电子温度的深势分子动力学模拟热致密物质","authors":"Yuzhi Zhang, Chang Gao, Qianrui Liu, Linfeng Zhang, Han Wang, Mohan Chen","doi":"10.1063/5.0023265","DOIUrl":null,"url":null,"abstract":"Simulating warm dense matter that undergoes a wide range of temperatures and densities is challenging. Predictive theoretical models, such as quantum-mechanics-based first-principles molecular dynamics (FPMD), require a huge amount of computational resources. Herein, we propose a deep learning based scheme, called electron temperature dependent deep potential molecular dynamics (TDDPMD), for efficiently simulating warm dense matter with the accuracy of FPMD. The TDDPMD simulation is several orders of magnitudes faster than FPMD, and, unlike FPMD, its efficiency is not affected by the electron temperature. We apply the TDDPMD scheme to beryllium (Be) in a wide range of temperatures (0.4 to 2500 eV) and densities (3.50 to 8.25 g/cm$^3$). Our results demonstrate that the TDDPMD method not only accurately reproduces the structural properties of Be along the principal Hugoniot curve at the FPMD level, but also yields even more reliable diffusion coefficients than typical FPMD simulations due to its ability to simulate larger systems with longer time.","PeriodicalId":8424,"journal":{"name":"arXiv: Computational Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Warm dense matter simulation via electron temperature dependent deep potential molecular dynamics\",\"authors\":\"Yuzhi Zhang, Chang Gao, Qianrui Liu, Linfeng Zhang, Han Wang, Mohan Chen\",\"doi\":\"10.1063/5.0023265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulating warm dense matter that undergoes a wide range of temperatures and densities is challenging. Predictive theoretical models, such as quantum-mechanics-based first-principles molecular dynamics (FPMD), require a huge amount of computational resources. Herein, we propose a deep learning based scheme, called electron temperature dependent deep potential molecular dynamics (TDDPMD), for efficiently simulating warm dense matter with the accuracy of FPMD. The TDDPMD simulation is several orders of magnitudes faster than FPMD, and, unlike FPMD, its efficiency is not affected by the electron temperature. We apply the TDDPMD scheme to beryllium (Be) in a wide range of temperatures (0.4 to 2500 eV) and densities (3.50 to 8.25 g/cm$^3$). Our results demonstrate that the TDDPMD method not only accurately reproduces the structural properties of Be along the principal Hugoniot curve at the FPMD level, but also yields even more reliable diffusion coefficients than typical FPMD simulations due to its ability to simulate larger systems with longer time.\",\"PeriodicalId\":8424,\"journal\":{\"name\":\"arXiv: Computational Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computational Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0023265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0023265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

模拟温度和密度范围很大的温暖致密物质是一项挑战。预测理论模型,如基于量子力学的第一性原理分子动力学(FPMD),需要大量的计算资源。在此,我们提出了一种基于深度学习的方案,称为电子温度依赖的深势分子动力学(TDDPMD),以FPMD的精度有效地模拟温暖的致密物质。TDDPMD模拟比FPMD快几个数量级,并且与FPMD不同,其效率不受电子温度的影响。我们将TDDPMD方案应用于铍(Be)在宽温度(0.4至2500 eV)和密度(3.50至8.25 g/cm$^3$)范围内。我们的研究结果表明,TDDPMD方法不仅在FPMD水平上沿着主Hugoniot曲线准确地再现了Be的结构特性,而且由于其能够模拟更大的系统和更长的时间,因此比典型的FPMD模拟产生了更可靠的扩散系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Warm dense matter simulation via electron temperature dependent deep potential molecular dynamics
Simulating warm dense matter that undergoes a wide range of temperatures and densities is challenging. Predictive theoretical models, such as quantum-mechanics-based first-principles molecular dynamics (FPMD), require a huge amount of computational resources. Herein, we propose a deep learning based scheme, called electron temperature dependent deep potential molecular dynamics (TDDPMD), for efficiently simulating warm dense matter with the accuracy of FPMD. The TDDPMD simulation is several orders of magnitudes faster than FPMD, and, unlike FPMD, its efficiency is not affected by the electron temperature. We apply the TDDPMD scheme to beryllium (Be) in a wide range of temperatures (0.4 to 2500 eV) and densities (3.50 to 8.25 g/cm$^3$). Our results demonstrate that the TDDPMD method not only accurately reproduces the structural properties of Be along the principal Hugoniot curve at the FPMD level, but also yields even more reliable diffusion coefficients than typical FPMD simulations due to its ability to simulate larger systems with longer time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信