弧复形中的有限刚集

Emily Shinkle
{"title":"弧复形中的有限刚集","authors":"Emily Shinkle","doi":"10.2140/agt.2020.20.3127","DOIUrl":null,"url":null,"abstract":"For any compact, connected, orientable, finite-type surface with marked points other than the sphere with three marked points, we construct a finite rigid set of its arc complex: a finite simplicial subcomplex of its arc complex such that any locally injective map of this set into the arc complex of another surface with arc complex of the same or lower dimension is induced by a homeomorphism of the surfaces, unique up to isotopy in most cases. It follows that if the arc complexes of two surfaces are isomorphic, the surfaces are homeomorphic. We also give an exhaustion of the arc complex by finite rigid sets. This extends the results of Irmak--McCarthy.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"704 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Finite rigid sets in arc complexes\",\"authors\":\"Emily Shinkle\",\"doi\":\"10.2140/agt.2020.20.3127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any compact, connected, orientable, finite-type surface with marked points other than the sphere with three marked points, we construct a finite rigid set of its arc complex: a finite simplicial subcomplex of its arc complex such that any locally injective map of this set into the arc complex of another surface with arc complex of the same or lower dimension is induced by a homeomorphism of the surfaces, unique up to isotopy in most cases. It follows that if the arc complexes of two surfaces are isomorphic, the surfaces are homeomorphic. We also give an exhaustion of the arc complex by finite rigid sets. This extends the results of Irmak--McCarthy.\",\"PeriodicalId\":8454,\"journal\":{\"name\":\"arXiv: Geometric Topology\",\"volume\":\"704 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2020.20.3127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/agt.2020.20.3127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

对于任何紧致的、连通的、可定向的、有标记点的有限型曲面,而不是有三个标记点的球面,我们构造了它的弧复合体的有限刚性集:它的弧复合体的有限简单子复,使得这个集合到另一个具有相同或更低维的弧复合体的弧复合体的任何局部内射映射都是由曲面的同纯性引起的,在大多数情况下是唯一的。如果两个曲面的弧复形是同构的,则两个曲面是同胚的。我们还给出了有限刚体集对弧复形的耗尽。这扩展了伊尔马克-麦卡锡的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite rigid sets in arc complexes
For any compact, connected, orientable, finite-type surface with marked points other than the sphere with three marked points, we construct a finite rigid set of its arc complex: a finite simplicial subcomplex of its arc complex such that any locally injective map of this set into the arc complex of another surface with arc complex of the same or lower dimension is induced by a homeomorphism of the surfaces, unique up to isotopy in most cases. It follows that if the arc complexes of two surfaces are isomorphic, the surfaces are homeomorphic. We also give an exhaustion of the arc complex by finite rigid sets. This extends the results of Irmak--McCarthy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信