非线性控制系统控制器的优化设计方法

IF 0.3 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
S. Zavadskiy, Dmitrii A. Ovsyannikov, Dmitrii D. Melnikov
{"title":"非线性控制系统控制器的优化设计方法","authors":"S. Zavadskiy, Dmitrii A. Ovsyannikov, Dmitrii D. Melnikov","doi":"10.21638/11701/spbu10.2023.109","DOIUrl":null,"url":null,"abstract":"The optimization approach is applied to the synthesis and optimization of nonlinear real-time feedback optimal control system of a certain Maglev platform. To optimize the nonlinear control law, the integral functional criteria is minimized, which evaluates the quality of the dynamics of not one trajectory, but an ensemble of nonlinear trajectories of the system. The considered ensemble of trajectories covers the entire area of the engineering gap between the platform and the guide rails. In this area the magnetic forces provide highly nonlinear effects due to the considered design features of the object. At the same time, it is required to provide the stabilization within the entire engineering gap. It makes this statement to be a multi-input nonlinear control problem. The components of the feedback control law vector have a polynomial form of the state-space variables. As a result of computational optimization of trajectories ensemble, a class of Pareto-optimal polynomial regulators is constructed for considered control object. In the presented set, each Pareto-optimal point corresponds to a specific designed controller and investigated functional criteria which evaluates the entire ensemble of perturbed nonlinear trajectories. This allows a research engineer to choose various nonlinear regulators and achieve a compromise between stabilization accuracy and energy costs.","PeriodicalId":43738,"journal":{"name":"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya","volume":"31 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization approach to the design of nonlinear control system controllers\",\"authors\":\"S. Zavadskiy, Dmitrii A. Ovsyannikov, Dmitrii D. Melnikov\",\"doi\":\"10.21638/11701/spbu10.2023.109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimization approach is applied to the synthesis and optimization of nonlinear real-time feedback optimal control system of a certain Maglev platform. To optimize the nonlinear control law, the integral functional criteria is minimized, which evaluates the quality of the dynamics of not one trajectory, but an ensemble of nonlinear trajectories of the system. The considered ensemble of trajectories covers the entire area of the engineering gap between the platform and the guide rails. In this area the magnetic forces provide highly nonlinear effects due to the considered design features of the object. At the same time, it is required to provide the stabilization within the entire engineering gap. It makes this statement to be a multi-input nonlinear control problem. The components of the feedback control law vector have a polynomial form of the state-space variables. As a result of computational optimization of trajectories ensemble, a class of Pareto-optimal polynomial regulators is constructed for considered control object. In the presented set, each Pareto-optimal point corresponds to a specific designed controller and investigated functional criteria which evaluates the entire ensemble of perturbed nonlinear trajectories. This allows a research engineer to choose various nonlinear regulators and achieve a compromise between stabilization accuracy and energy costs.\",\"PeriodicalId\":43738,\"journal\":{\"name\":\"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21638/11701/spbu10.2023.109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21638/11701/spbu10.2023.109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

将该优化方法应用于某磁悬浮平台非线性实时反馈最优控制系统的综合与优化。为了优化非线性控制律,将积分泛函准则最小化,该准则评价的不是单个轨迹的动力学质量,而是系统的非线性轨迹集合。所考虑的轨迹集合涵盖了平台和导轨之间工程间隙的整个区域。在这个区域,由于考虑到物体的设计特征,磁力提供了高度非线性的效应。同时,要求在整个工程间隙内提供稳定。它使这一表述成为一个多输入非线性控制问题。反馈控制律矢量的分量具有状态空间变量的多项式形式。作为轨迹集合计算优化的结果,对考虑的控制对象构造了一类pareto最优多项式调节器。在给定的集合中,每个帕累托最优点对应于一个特定的设计控制器,并研究了评估整个摄动非线性轨迹集合的功能准则。这使得研究工程师可以选择各种非线性调节器,并在稳定精度和能源成本之间实现折衷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization approach to the design of nonlinear control system controllers
The optimization approach is applied to the synthesis and optimization of nonlinear real-time feedback optimal control system of a certain Maglev platform. To optimize the nonlinear control law, the integral functional criteria is minimized, which evaluates the quality of the dynamics of not one trajectory, but an ensemble of nonlinear trajectories of the system. The considered ensemble of trajectories covers the entire area of the engineering gap between the platform and the guide rails. In this area the magnetic forces provide highly nonlinear effects due to the considered design features of the object. At the same time, it is required to provide the stabilization within the entire engineering gap. It makes this statement to be a multi-input nonlinear control problem. The components of the feedback control law vector have a polynomial form of the state-space variables. As a result of computational optimization of trajectories ensemble, a class of Pareto-optimal polynomial regulators is constructed for considered control object. In the presented set, each Pareto-optimal point corresponds to a specific designed controller and investigated functional criteria which evaluates the entire ensemble of perturbed nonlinear trajectories. This allows a research engineer to choose various nonlinear regulators and achieve a compromise between stabilization accuracy and energy costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
50.00%
发文量
10
期刊介绍: The journal is the prime outlet for the findings of scientists from the Faculty of applied mathematics and control processes of St. Petersburg State University. It publishes original contributions in all areas of applied mathematics, computer science and control. Vestnik St. Petersburg University: Applied Mathematics. Computer Science. Control Processes features articles that cover the major areas of applied mathematics, computer science and control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信