非高斯光束剖面对强子对撞机性能的影响

S. Papadopoulou, F. Antoniou, T. Argyropoulos, M. Hostettler, Y. Papaphilippou, G. Trad
{"title":"非高斯光束剖面对强子对撞机性能的影响","authors":"S. Papadopoulou, F. Antoniou, T. Argyropoulos, M. Hostettler, Y. Papaphilippou, G. Trad","doi":"10.1103/PHYSREVACCELBEAMS.23.101004","DOIUrl":null,"url":null,"abstract":"At the Large Hadron Collider (LHC), the interplay between a series of effects, including intrabeam scattering (IBS), synchrotron radiation, longitudinal beam manipulations, two beam effects (beam-beam, e-cloud) and machine non-linearities, can change the population of the core and tails and lead to non-Gaussian beam distributions, at different periods during the beam cycle. By employing generalised distribution functions, it can be demonstrated that the modified non-Gaussian beam profiles have an impact in the beam emittance evolution by itself and thereby to the collider luminosity. This paper focuses on the estimation of beam distribution modification and the resulting rms beam size due to the combined effect of IBS and synchrotron radiation by employing a Monte-Carlo simulation code which is able to track 3D generalised particle distributions (SIRE). The code is first benchmarked over classical semi-analytical IBS theories and then compared with measurements from the LHC at injection and collision energies, including projections for the High-Luminosity LHC (HL-LHC) high brightness regime. The impact of the distribution shape on the evolution of the bunch characteristics and machine performance is finally addressed.","PeriodicalId":8436,"journal":{"name":"arXiv: Accelerator Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Impact of non-Gaussian beam profiles in the performance of hadron colliders\",\"authors\":\"S. Papadopoulou, F. Antoniou, T. Argyropoulos, M. Hostettler, Y. Papaphilippou, G. Trad\",\"doi\":\"10.1103/PHYSREVACCELBEAMS.23.101004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At the Large Hadron Collider (LHC), the interplay between a series of effects, including intrabeam scattering (IBS), synchrotron radiation, longitudinal beam manipulations, two beam effects (beam-beam, e-cloud) and machine non-linearities, can change the population of the core and tails and lead to non-Gaussian beam distributions, at different periods during the beam cycle. By employing generalised distribution functions, it can be demonstrated that the modified non-Gaussian beam profiles have an impact in the beam emittance evolution by itself and thereby to the collider luminosity. This paper focuses on the estimation of beam distribution modification and the resulting rms beam size due to the combined effect of IBS and synchrotron radiation by employing a Monte-Carlo simulation code which is able to track 3D generalised particle distributions (SIRE). The code is first benchmarked over classical semi-analytical IBS theories and then compared with measurements from the LHC at injection and collision energies, including projections for the High-Luminosity LHC (HL-LHC) high brightness regime. The impact of the distribution shape on the evolution of the bunch characteristics and machine performance is finally addressed.\",\"PeriodicalId\":8436,\"journal\":{\"name\":\"arXiv: Accelerator Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Accelerator Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVACCELBEAMS.23.101004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Accelerator Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVACCELBEAMS.23.101004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在大型强子对撞机(LHC)中,束内散射(IBS)、同步辐射、纵束操纵、两束效应(束流、电子云)和机器非线性等一系列效应之间的相互作用,会在束周期的不同时期改变核心和尾部的密度,导致束的非高斯分布。利用广义分布函数,可以证明修改后的非高斯光束轮廓本身对光束发射度演化有影响,从而对对撞机亮度有影响。本文采用能够跟踪三维广义粒子分布(SIRE)的蒙特卡罗模拟代码,重点研究了IBS和同步辐射联合作用下的光束分布修正和由此产生的均方根光束尺寸的估计。该代码首先以经典的半解析IBS理论为基准,然后与LHC在注入和碰撞能量下的测量结果进行比较,包括对高亮度LHC (HL-LHC)高亮度体制的预测。最后讨论了分布形状对束束特性演变和机器性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of non-Gaussian beam profiles in the performance of hadron colliders
At the Large Hadron Collider (LHC), the interplay between a series of effects, including intrabeam scattering (IBS), synchrotron radiation, longitudinal beam manipulations, two beam effects (beam-beam, e-cloud) and machine non-linearities, can change the population of the core and tails and lead to non-Gaussian beam distributions, at different periods during the beam cycle. By employing generalised distribution functions, it can be demonstrated that the modified non-Gaussian beam profiles have an impact in the beam emittance evolution by itself and thereby to the collider luminosity. This paper focuses on the estimation of beam distribution modification and the resulting rms beam size due to the combined effect of IBS and synchrotron radiation by employing a Monte-Carlo simulation code which is able to track 3D generalised particle distributions (SIRE). The code is first benchmarked over classical semi-analytical IBS theories and then compared with measurements from the LHC at injection and collision energies, including projections for the High-Luminosity LHC (HL-LHC) high brightness regime. The impact of the distribution shape on the evolution of the bunch characteristics and machine performance is finally addressed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信