考虑土壤肥力的高光谱图像的无监督解混与分割

IF 0.9 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
K. Lavanya, R. Jaya Subalakshmi, T. Tamizharasi, Lydia Jane, A. Victor
{"title":"考虑土壤肥力的高光谱图像的无监督解混与分割","authors":"K. Lavanya, R. Jaya Subalakshmi, T. Tamizharasi, Lydia Jane, A. Victor","doi":"10.12694/scpe.v23i4.2031","DOIUrl":null,"url":null,"abstract":"A crucial component of precision agriculture is the capability to assess the fertility of soil by looking at the precise distribution and composition of its different constituents. This study aims to investigate how different machine learning models may be used to assess soil fertility using hyperspectral pictures. The development of images using a random mixing of different soil components is the first phase, and the hyper spectral bands utilized to create the images are not used again during the analysis procedure. The resulting end members are then acquired by applying the NFINDR algorithm to the process of spectral unmixing this image. The comparison between these end members and the band values of the known elements is then quantified., i.e. it is represented as a graph of band values obtained through spectral unmixing. Finally we quantify the similarities between both graphs and proceed towards the classification of the hyper spectral image as fertile or infertile. In order to classify the hyper spectral image as fertile or infertile, we quantify the similarities between the two graphs. Clustering and picture segmentation algorithms have been devised to help with this process, and a comparison is then made to show which techniques are the most effective.","PeriodicalId":43791,"journal":{"name":"Scalable Computing-Practice and Experience","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised Unmixing and Segmentation of Hyper Spectral Images Accounting for Soil Fertility\",\"authors\":\"K. Lavanya, R. Jaya Subalakshmi, T. Tamizharasi, Lydia Jane, A. Victor\",\"doi\":\"10.12694/scpe.v23i4.2031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A crucial component of precision agriculture is the capability to assess the fertility of soil by looking at the precise distribution and composition of its different constituents. This study aims to investigate how different machine learning models may be used to assess soil fertility using hyperspectral pictures. The development of images using a random mixing of different soil components is the first phase, and the hyper spectral bands utilized to create the images are not used again during the analysis procedure. The resulting end members are then acquired by applying the NFINDR algorithm to the process of spectral unmixing this image. The comparison between these end members and the band values of the known elements is then quantified., i.e. it is represented as a graph of band values obtained through spectral unmixing. Finally we quantify the similarities between both graphs and proceed towards the classification of the hyper spectral image as fertile or infertile. In order to classify the hyper spectral image as fertile or infertile, we quantify the similarities between the two graphs. Clustering and picture segmentation algorithms have been devised to help with this process, and a comparison is then made to show which techniques are the most effective.\",\"PeriodicalId\":43791,\"journal\":{\"name\":\"Scalable Computing-Practice and Experience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scalable Computing-Practice and Experience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12694/scpe.v23i4.2031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scalable Computing-Practice and Experience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12694/scpe.v23i4.2031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

精准农业的一个关键组成部分是通过观察土壤不同成分的精确分布和组成来评估土壤肥力的能力。本研究旨在研究如何使用不同的机器学习模型来使用高光谱图像评估土壤肥力。使用不同土壤成分随机混合的图像开发是第一阶段,用于创建图像的高光谱波段在分析过程中不会再次使用。然后将NFINDR算法应用到该图像的光谱解混过程中,获得最终的端元。然后将这些端元与已知元素的能带值进行比较。,即表示为通过光谱解混得到的带值图。最后,我们量化了两个图之间的相似性,并着手将高光谱图像分类为可育或不育。为了将高光谱图像分类为可育或不育,我们量化了两个图之间的相似度。聚类和图像分割算法已经被设计出来帮助这个过程,然后进行比较,以显示哪种技术是最有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Unmixing and Segmentation of Hyper Spectral Images Accounting for Soil Fertility
A crucial component of precision agriculture is the capability to assess the fertility of soil by looking at the precise distribution and composition of its different constituents. This study aims to investigate how different machine learning models may be used to assess soil fertility using hyperspectral pictures. The development of images using a random mixing of different soil components is the first phase, and the hyper spectral bands utilized to create the images are not used again during the analysis procedure. The resulting end members are then acquired by applying the NFINDR algorithm to the process of spectral unmixing this image. The comparison between these end members and the band values of the known elements is then quantified., i.e. it is represented as a graph of band values obtained through spectral unmixing. Finally we quantify the similarities between both graphs and proceed towards the classification of the hyper spectral image as fertile or infertile. In order to classify the hyper spectral image as fertile or infertile, we quantify the similarities between the two graphs. Clustering and picture segmentation algorithms have been devised to help with this process, and a comparison is then made to show which techniques are the most effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scalable Computing-Practice and Experience
Scalable Computing-Practice and Experience COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.00
自引率
0.00%
发文量
10
期刊介绍: The area of scalable computing has matured and reached a point where new issues and trends require a professional forum. SCPE will provide this avenue by publishing original refereed papers that address the present as well as the future of parallel and distributed computing. The journal will focus on algorithm development, implementation and execution on real-world parallel architectures, and application of parallel and distributed computing to the solution of real-life problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信