{"title":"球上乘数代数的插值和对偶性","authors":"K. Davidson, Michael Hartz","doi":"10.4171/jems/1245","DOIUrl":null,"url":null,"abstract":"We study the multiplier algebras $A(\\mathcal{H})$ obtained as the closure of the polynomials on certain reproducing kernel Hilbert spaces $\\mathcal{H}$ on the ball $\\mathbb{B}_d$ of $\\mathbb{C}^d$. Our results apply, in particular, to the Drury-Arveson space, the Dirichlet space and the Hardy space on the ball. We first obtain a complete description of the dual and second dual spaces of $A(\\mathcal H)$ in terms of the complementary bands of Henkin and totally singular measures for $\\operatorname{Mult}(\\mathcal{H})$. This is applied to obtain several definitive results in interpolation. In particular, we establish a sharp peak interpolation result for compact $\\operatorname{Mult}(\\mathcal{H})$-totally null sets as well as a Pick and peak interpolation theorem. Conversely, we show that a mere interpolation set is $\\operatorname{Mult}(\\mathcal{H})$-totally null.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Interpolation and duality in algebras of multipliers on the ball\",\"authors\":\"K. Davidson, Michael Hartz\",\"doi\":\"10.4171/jems/1245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the multiplier algebras $A(\\\\mathcal{H})$ obtained as the closure of the polynomials on certain reproducing kernel Hilbert spaces $\\\\mathcal{H}$ on the ball $\\\\mathbb{B}_d$ of $\\\\mathbb{C}^d$. Our results apply, in particular, to the Drury-Arveson space, the Dirichlet space and the Hardy space on the ball. We first obtain a complete description of the dual and second dual spaces of $A(\\\\mathcal H)$ in terms of the complementary bands of Henkin and totally singular measures for $\\\\operatorname{Mult}(\\\\mathcal{H})$. This is applied to obtain several definitive results in interpolation. In particular, we establish a sharp peak interpolation result for compact $\\\\operatorname{Mult}(\\\\mathcal{H})$-totally null sets as well as a Pick and peak interpolation theorem. Conversely, we show that a mere interpolation set is $\\\\operatorname{Mult}(\\\\mathcal{H})$-totally null.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/jems/1245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/jems/1245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
摘要
研究了在$\mathbb{C}^d$的$\mathbb{B}_d$上的若干可再生核希尔伯特空间$\mathcal{H}$上多项式的闭包所得到的乘子代数$A(\mathcal{H})$。我们的结果特别适用于球上的Drury-Arveson空间、Dirichlet空间和Hardy空间。首先给出了$ a (\mathcal H)$的对偶空间和第二对偶空间在$\operatorname{Mult}(\mathcal{H})$的Henkin互补带和全奇异测度的完备描述。该方法在插值中得到了几个明确的结果。特别地,我们建立了紧$\operatorname{Mult}(\mathcal{H})$-全空集的尖峰插值结果以及Pick和peak插值定理。相反,我们证明了一个单纯的插值集$\operatorname{Mult}(\mathcal{H})$-完全为空。
Interpolation and duality in algebras of multipliers on the ball
We study the multiplier algebras $A(\mathcal{H})$ obtained as the closure of the polynomials on certain reproducing kernel Hilbert spaces $\mathcal{H}$ on the ball $\mathbb{B}_d$ of $\mathbb{C}^d$. Our results apply, in particular, to the Drury-Arveson space, the Dirichlet space and the Hardy space on the ball. We first obtain a complete description of the dual and second dual spaces of $A(\mathcal H)$ in terms of the complementary bands of Henkin and totally singular measures for $\operatorname{Mult}(\mathcal{H})$. This is applied to obtain several definitive results in interpolation. In particular, we establish a sharp peak interpolation result for compact $\operatorname{Mult}(\mathcal{H})$-totally null sets as well as a Pick and peak interpolation theorem. Conversely, we show that a mere interpolation set is $\operatorname{Mult}(\mathcal{H})$-totally null.