柄体群与第二约翰逊同态的象

IF 0.6 3区 数学 Q3 MATHEMATICS
Quentin Faes
{"title":"柄体群与第二约翰逊同态的象","authors":"Quentin Faes","doi":"10.2140/agt.2023.23.243","DOIUrl":null,"url":null,"abstract":"Given an oriented surface bounding a handlebody, we study the subgroup of its mapping class group defined as the intersection of the handlebody group and the second term of the Johnson filtration: $\\mathcal{A} \\cap J_2$. We introduce two trace-like operators, inspired by Morita's trace, and show that their kernels coincide with the images by the second Johnson homomorphism $\\tau_2$ of $J_2$ and $\\mathcal{A} \\cap J_2$, respectively. In particular, we answer by the negative to a question asked by Levine about an algebraic description of $\\tau_2(\\mathcal{A} \\cap J_2)$. By the same techniques, and for a Heegaard surface in $S^3$, we also compute the image by $\\tau_2$ of the intersection of the Goeritz group $\\mathcal{G}$ with $J_2$.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"9 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The handlebody group and the images of the second Johnson homomorphism\",\"authors\":\"Quentin Faes\",\"doi\":\"10.2140/agt.2023.23.243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given an oriented surface bounding a handlebody, we study the subgroup of its mapping class group defined as the intersection of the handlebody group and the second term of the Johnson filtration: $\\\\mathcal{A} \\\\cap J_2$. We introduce two trace-like operators, inspired by Morita's trace, and show that their kernels coincide with the images by the second Johnson homomorphism $\\\\tau_2$ of $J_2$ and $\\\\mathcal{A} \\\\cap J_2$, respectively. In particular, we answer by the negative to a question asked by Levine about an algebraic description of $\\\\tau_2(\\\\mathcal{A} \\\\cap J_2)$. By the same techniques, and for a Heegaard surface in $S^3$, we also compute the image by $\\\\tau_2$ of the intersection of the Goeritz group $\\\\mathcal{G}$ with $J_2$.\",\"PeriodicalId\":50826,\"journal\":{\"name\":\"Algebraic and Geometric Topology\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic and Geometric Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2023.23.243\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/agt.2023.23.243","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

给定一个有向曲面包围着一个柄体,我们研究了它的映射类群的子群,这个映射类群被定义为柄体群与Johnson过滤的第二项的交集:$\mathcal{A} \cap J_2$。受Morita的迹启发,我们引入了两个类迹算子,并分别通过$J_2$和$\mathcal{A} \cap J_2$的二次Johnson同态$\tau_2$证明了它们的核与图像重合。特别地,我们以否定的方式回答Levine提出的关于$\tau_2(\mathcal{A} \cap J_2)$的代数描述的问题。通过相同的技术,对于$S^3$中的Heegaard曲面,我们还通过$\tau_2$计算Goeritz群$\mathcal{G}$与$J_2$相交的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The handlebody group and the images of the second Johnson homomorphism
Given an oriented surface bounding a handlebody, we study the subgroup of its mapping class group defined as the intersection of the handlebody group and the second term of the Johnson filtration: $\mathcal{A} \cap J_2$. We introduce two trace-like operators, inspired by Morita's trace, and show that their kernels coincide with the images by the second Johnson homomorphism $\tau_2$ of $J_2$ and $\mathcal{A} \cap J_2$, respectively. In particular, we answer by the negative to a question asked by Levine about an algebraic description of $\tau_2(\mathcal{A} \cap J_2)$. By the same techniques, and for a Heegaard surface in $S^3$, we also compute the image by $\tau_2$ of the intersection of the Goeritz group $\mathcal{G}$ with $J_2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信