利用常规气象参数估算热带城市(7.23°N)太阳总辐射3.52°E)使用二次模型

G. I. Olatona
{"title":"利用常规气象参数估算热带城市(7.23°N)太阳总辐射3.52°E)使用二次模型","authors":"G. I. Olatona","doi":"10.2478/awutp-2018-0005","DOIUrl":null,"url":null,"abstract":"Abstract The need for adequate solar radiation is ever increasing for various applications. However there is an inadequate data of solar radiation in many countries due to the cost of instrument set up. Hence this study investigates two models for estimating solar radiation from routinely measured meteorological parameters. The data were obtained from the International Institute of Tropical Agriculture, Ibadan. The regression coefficients of the quadratic models were determined and used to estimate the global solar radiation for both forward and backward predictions. Their predictive accuracies were compared with four other models and the measured values using standard statistical error indicators. The results showed for forward as compared to backward predictions in bracket root mean square errors 1.2 (1.1); mean bias errors 1.1 (0.8) and mean percentage errors -4.8% (-2.9%) while for backward prediction 1.9 (1.7), 1.7 (1.4) and 7.9% (2.2%) measured in KJm−2day−1 respectively. A positive error value shows an over estimation while a negative value shows an under estimation. The models are versatile for estimating global solar radiation at the horizontal surface, fixing missing data and correcting outliers.","PeriodicalId":31012,"journal":{"name":"Annals of West University of Timisoara Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Estimating Global Solar Radiation from Routine Meteorological Parameters Over a Tropical City (7.23°N; 3.52°E) Using Quadratic Models\",\"authors\":\"G. I. Olatona\",\"doi\":\"10.2478/awutp-2018-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The need for adequate solar radiation is ever increasing for various applications. However there is an inadequate data of solar radiation in many countries due to the cost of instrument set up. Hence this study investigates two models for estimating solar radiation from routinely measured meteorological parameters. The data were obtained from the International Institute of Tropical Agriculture, Ibadan. The regression coefficients of the quadratic models were determined and used to estimate the global solar radiation for both forward and backward predictions. Their predictive accuracies were compared with four other models and the measured values using standard statistical error indicators. The results showed for forward as compared to backward predictions in bracket root mean square errors 1.2 (1.1); mean bias errors 1.1 (0.8) and mean percentage errors -4.8% (-2.9%) while for backward prediction 1.9 (1.7), 1.7 (1.4) and 7.9% (2.2%) measured in KJm−2day−1 respectively. A positive error value shows an over estimation while a negative value shows an under estimation. The models are versatile for estimating global solar radiation at the horizontal surface, fixing missing data and correcting outliers.\",\"PeriodicalId\":31012,\"journal\":{\"name\":\"Annals of West University of Timisoara Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of West University of Timisoara Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/awutp-2018-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of West University of Timisoara Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/awutp-2018-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

摘要各种应用对充足太阳辐射的需求日益增加。然而,由于仪器设置费用的原因,许多国家的太阳辐射数据不足。因此,本研究探讨了根据常规测量的气象参数估算太阳辐射的两种模式。这些数据来自伊巴丹的国际热带农业研究所。确定了二次模型的回归系数,并将其用于估算全球太阳辐射的正向和反向预测。使用标准统计误差指标将其预测精度与其他四种模型和实测值进行比较。结果表明,与后向预测相比,前向预测的均方根误差为1.2 (1.1);平均偏差误差为1.1(0.8),平均百分比误差为-4.8%(-2.9%),而向后预测的误差分别为1.9(1.7)、1.7(1.4)和7.9%(2.2%),测量时间为KJm−2day−1。误差值为正表示估计过高,而误差值为负值表示估计不足。这些模型在估算水平表面的全球太阳辐射、修复缺失数据和校正异常值方面用途广泛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating Global Solar Radiation from Routine Meteorological Parameters Over a Tropical City (7.23°N; 3.52°E) Using Quadratic Models
Abstract The need for adequate solar radiation is ever increasing for various applications. However there is an inadequate data of solar radiation in many countries due to the cost of instrument set up. Hence this study investigates two models for estimating solar radiation from routinely measured meteorological parameters. The data were obtained from the International Institute of Tropical Agriculture, Ibadan. The regression coefficients of the quadratic models were determined and used to estimate the global solar radiation for both forward and backward predictions. Their predictive accuracies were compared with four other models and the measured values using standard statistical error indicators. The results showed for forward as compared to backward predictions in bracket root mean square errors 1.2 (1.1); mean bias errors 1.1 (0.8) and mean percentage errors -4.8% (-2.9%) while for backward prediction 1.9 (1.7), 1.7 (1.4) and 7.9% (2.2%) measured in KJm−2day−1 respectively. A positive error value shows an over estimation while a negative value shows an under estimation. The models are versatile for estimating global solar radiation at the horizontal surface, fixing missing data and correcting outliers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信