分段空间、跨度和半分类

R. Haugseng
{"title":"分段空间、跨度和半分类","authors":"R. Haugseng","doi":"10.1090/proc/15197","DOIUrl":null,"url":null,"abstract":"We show that Segal spaces, and more generally category objects in an $\\infty$-category $\\mathcal{C}$, can be identified with associative algebras in the double $\\infty$-category of spans in $\\mathcal{C}$. We use this observation to prove that \"having identities\" is a property of a non-unital $(\\infty,n)$-category.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Segal spaces, spans, and semicategories\",\"authors\":\"R. Haugseng\",\"doi\":\"10.1090/proc/15197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that Segal spaces, and more generally category objects in an $\\\\infty$-category $\\\\mathcal{C}$, can be identified with associative algebras in the double $\\\\infty$-category of spans in $\\\\mathcal{C}$. We use this observation to prove that \\\"having identities\\\" is a property of a non-unital $(\\\\infty,n)$-category.\",\"PeriodicalId\":8433,\"journal\":{\"name\":\"arXiv: Algebraic Topology\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/15197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/proc/15197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们证明了Segal空间,以及更一般的$\infty$ -类别$\mathcal{C}$中的范畴对象,可以用$\mathcal{C}$中跨的双$\infty$ -类别中的关联代数来标识。我们用这个观察证明了“有恒等式”是一个非酉$(\infty,n)$ -范畴的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segal spaces, spans, and semicategories
We show that Segal spaces, and more generally category objects in an $\infty$-category $\mathcal{C}$, can be identified with associative algebras in the double $\infty$-category of spans in $\mathcal{C}$. We use this observation to prove that "having identities" is a property of a non-unital $(\infty,n)$-category.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信