基于逆希尔伯特变换的广义Peierls-Nabarro模型的迭代格式

A. A. Ramabathiran
{"title":"基于逆希尔伯特变换的广义Peierls-Nabarro模型的迭代格式","authors":"A. A. Ramabathiran","doi":"10.1142/S2047684119500192","DOIUrl":null,"url":null,"abstract":"A new semi-analytical iterative scheme is proposed in this work for solving the generalized Peierls-Nabarro model. The numerical method developed here exploits certain basic properties of the Hilbert transform to achieve the desired reduction of the non-local and non-linear equations characterizing the generalized Peierls-Nabarro model to a local fixed point iteration scheme. The method is validated with simple examples involving the 1D Peierls-Nabarro model corresponding to a sinusoidal stacking fault energy, and with calculations of the core structure of both edge and screw dislocations on the close-packed $\\{111\\}$ planes in Aluminium. An approximate technique to incorporate external stresses within the framework of the proposed iterative scheme is also discussed with applications to the equilibration of a dislocation dipole. Finally, the advantages, limitations and avenues for future extension of the proposed method are discussed.","PeriodicalId":8424,"journal":{"name":"arXiv: Computational Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An iterative scheme for the generalized Peierls–Nabarro model based on the inverse Hilbert transform\",\"authors\":\"A. A. Ramabathiran\",\"doi\":\"10.1142/S2047684119500192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new semi-analytical iterative scheme is proposed in this work for solving the generalized Peierls-Nabarro model. The numerical method developed here exploits certain basic properties of the Hilbert transform to achieve the desired reduction of the non-local and non-linear equations characterizing the generalized Peierls-Nabarro model to a local fixed point iteration scheme. The method is validated with simple examples involving the 1D Peierls-Nabarro model corresponding to a sinusoidal stacking fault energy, and with calculations of the core structure of both edge and screw dislocations on the close-packed $\\\\{111\\\\}$ planes in Aluminium. An approximate technique to incorporate external stresses within the framework of the proposed iterative scheme is also discussed with applications to the equilibration of a dislocation dipole. Finally, the advantages, limitations and avenues for future extension of the proposed method are discussed.\",\"PeriodicalId\":8424,\"journal\":{\"name\":\"arXiv: Computational Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computational Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2047684119500192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2047684119500192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的求解广义Peierls-Nabarro模型的半解析迭代格式。本文提出的数值方法利用希尔伯特变换的某些基本性质,将表征广义Peierls-Nabarro模型的非局部和非线性方程简化为局部不动点迭代格式。通过一维peerls - nabarro模型的简单算例验证了该方法的有效性,该模型对应于正弦层错能,并计算了铝中紧密堆积的$\{111\}$平面上的边缘位错和螺旋位错的核心结构。本文还讨论了将外应力纳入所提出的迭代方案框架的近似技术,并将其应用于位错偶极子的平衡。最后,讨论了该方法的优点、局限性和未来推广的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An iterative scheme for the generalized Peierls–Nabarro model based on the inverse Hilbert transform
A new semi-analytical iterative scheme is proposed in this work for solving the generalized Peierls-Nabarro model. The numerical method developed here exploits certain basic properties of the Hilbert transform to achieve the desired reduction of the non-local and non-linear equations characterizing the generalized Peierls-Nabarro model to a local fixed point iteration scheme. The method is validated with simple examples involving the 1D Peierls-Nabarro model corresponding to a sinusoidal stacking fault energy, and with calculations of the core structure of both edge and screw dislocations on the close-packed $\{111\}$ planes in Aluminium. An approximate technique to incorporate external stresses within the framework of the proposed iterative scheme is also discussed with applications to the equilibration of a dislocation dipole. Finally, the advantages, limitations and avenues for future extension of the proposed method are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信