{"title":"氧含量对心脏直视手术患者术后认知功能障碍的影响","authors":"R. Soenarto, Aditya Arbi","doi":"10.4103/jnsbm.JNSBM_28_19","DOIUrl":null,"url":null,"abstract":"Introduction: Brain's decreased oxygen delivery is proposed as a risk factor for postoperative cognitive dysfunction (POCD). This study's objective was to investigate the effect of arterial oxygen content (CaO2) on POCD in patients undergoing open-heart surgery. Subjects and Methods: Adult patients listed for elective open-heart surgery at Cipto Mangunkusumo General Hospital were enrolled. The patients' cognitive function was tested using the Rey Auditory Verbal Learning Test, trail-making test, and digit span test (forward–backward) before and 5 days after surgery. The hemoglobin level, arterial saturation (SaO2), and arterial oxygen partial pressure (PaO2) were measured at the following five time points: before induction, 10 min after the commencement of cardiopulmonary bypass (CPB), 10 min after the cessation of CPB, 6 h postoperatively, and 1 day postoperatively. The CaO2 was calculated as follows: CaO2= 1.36 × hemoglobin × SaO2 + 0.003 × PaO2. Data were compared using Student's t-test or the Mann–Whitney test with SPSS software version 20.0 (IBM Corp., Armonk, NY, USA). Results: POCD was found in nine patients (47.4%). The CaO was significantly lower in patients with POCD than those without POCD at 10 min after the cessation of CPB (12.1 ± 2.6 vs. 14.5 ± 1.7, respectively; P = 0.03). The hemoglobin level appeared to be the cause of the decreased CaO2 in the POCD group (8.5 ± 2.3 vs. 10.2 ± 1.2, P = 0.06). Decreased oxygen content after CPB cessation may impair brain tissue oxygenation that causes POCD. Conclusion: Hemoglobin level may play an important role in POCD development after open-heart surgery.","PeriodicalId":16373,"journal":{"name":"Journal of Natural Science, Biology, and Medicine","volume":"166 1","pages":"7 - 10"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of oxygen content on postoperative cognitive dysfunction in patients undergoing open-heart surgery\",\"authors\":\"R. Soenarto, Aditya Arbi\",\"doi\":\"10.4103/jnsbm.JNSBM_28_19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Brain's decreased oxygen delivery is proposed as a risk factor for postoperative cognitive dysfunction (POCD). This study's objective was to investigate the effect of arterial oxygen content (CaO2) on POCD in patients undergoing open-heart surgery. Subjects and Methods: Adult patients listed for elective open-heart surgery at Cipto Mangunkusumo General Hospital were enrolled. The patients' cognitive function was tested using the Rey Auditory Verbal Learning Test, trail-making test, and digit span test (forward–backward) before and 5 days after surgery. The hemoglobin level, arterial saturation (SaO2), and arterial oxygen partial pressure (PaO2) were measured at the following five time points: before induction, 10 min after the commencement of cardiopulmonary bypass (CPB), 10 min after the cessation of CPB, 6 h postoperatively, and 1 day postoperatively. The CaO2 was calculated as follows: CaO2= 1.36 × hemoglobin × SaO2 + 0.003 × PaO2. Data were compared using Student's t-test or the Mann–Whitney test with SPSS software version 20.0 (IBM Corp., Armonk, NY, USA). Results: POCD was found in nine patients (47.4%). The CaO was significantly lower in patients with POCD than those without POCD at 10 min after the cessation of CPB (12.1 ± 2.6 vs. 14.5 ± 1.7, respectively; P = 0.03). The hemoglobin level appeared to be the cause of the decreased CaO2 in the POCD group (8.5 ± 2.3 vs. 10.2 ± 1.2, P = 0.06). Decreased oxygen content after CPB cessation may impair brain tissue oxygenation that causes POCD. Conclusion: Hemoglobin level may play an important role in POCD development after open-heart surgery.\",\"PeriodicalId\":16373,\"journal\":{\"name\":\"Journal of Natural Science, Biology, and Medicine\",\"volume\":\"166 1\",\"pages\":\"7 - 10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Natural Science, Biology, and Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/jnsbm.JNSBM_28_19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Science, Biology, and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jnsbm.JNSBM_28_19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Effect of oxygen content on postoperative cognitive dysfunction in patients undergoing open-heart surgery
Introduction: Brain's decreased oxygen delivery is proposed as a risk factor for postoperative cognitive dysfunction (POCD). This study's objective was to investigate the effect of arterial oxygen content (CaO2) on POCD in patients undergoing open-heart surgery. Subjects and Methods: Adult patients listed for elective open-heart surgery at Cipto Mangunkusumo General Hospital were enrolled. The patients' cognitive function was tested using the Rey Auditory Verbal Learning Test, trail-making test, and digit span test (forward–backward) before and 5 days after surgery. The hemoglobin level, arterial saturation (SaO2), and arterial oxygen partial pressure (PaO2) were measured at the following five time points: before induction, 10 min after the commencement of cardiopulmonary bypass (CPB), 10 min after the cessation of CPB, 6 h postoperatively, and 1 day postoperatively. The CaO2 was calculated as follows: CaO2= 1.36 × hemoglobin × SaO2 + 0.003 × PaO2. Data were compared using Student's t-test or the Mann–Whitney test with SPSS software version 20.0 (IBM Corp., Armonk, NY, USA). Results: POCD was found in nine patients (47.4%). The CaO was significantly lower in patients with POCD than those without POCD at 10 min after the cessation of CPB (12.1 ± 2.6 vs. 14.5 ± 1.7, respectively; P = 0.03). The hemoglobin level appeared to be the cause of the decreased CaO2 in the POCD group (8.5 ± 2.3 vs. 10.2 ± 1.2, P = 0.06). Decreased oxygen content after CPB cessation may impair brain tissue oxygenation that causes POCD. Conclusion: Hemoglobin level may play an important role in POCD development after open-heart surgery.