{"title":"与Rd上的dunkl算子相关的总Morrey空间的一些嵌入","authors":"F. A. Muslumova","doi":"10.30546/2617-7900.43.1.2023.94","DOIUrl":null,"url":null,"abstract":". On the R d the Dunkl operators (cid:8) D k,j (cid:9) d j =1 are the differential-difference operators associated with the reflection group Z d 2 on R d . We study some embeddings into the total Morrey space ( D k - total Morrey space) L p,λ,µ ( µ k ) , 0 ≤ λ, µ < d + 2 γ k associated with the Dunkl operator on R d . These spaces generalize the Morrey spaces associated with the Dunkl operator on R d ( D k -Morrey space) so that L p,λ ( µ k ) ≡ L p,λ,λ ( µ k ) and the modified Morrey spaces associated with the Dunkl operator on R d (modified D k -Morrey space) so that (cid:101) L p,λ ( µ k ) ≡ L p,λ, 0 ( µ k ) .","PeriodicalId":37257,"journal":{"name":"Transactions Issue Mathematics, Azerbaijan National Academy of Sciences","volume":"133 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some embeddings into the total Morrey spaces associated with the\\nDunkl operator on Rd\",\"authors\":\"F. A. Muslumova\",\"doi\":\"10.30546/2617-7900.43.1.2023.94\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". On the R d the Dunkl operators (cid:8) D k,j (cid:9) d j =1 are the differential-difference operators associated with the reflection group Z d 2 on R d . We study some embeddings into the total Morrey space ( D k - total Morrey space) L p,λ,µ ( µ k ) , 0 ≤ λ, µ < d + 2 γ k associated with the Dunkl operator on R d . These spaces generalize the Morrey spaces associated with the Dunkl operator on R d ( D k -Morrey space) so that L p,λ ( µ k ) ≡ L p,λ,λ ( µ k ) and the modified Morrey spaces associated with the Dunkl operator on R d (modified D k -Morrey space) so that (cid:101) L p,λ ( µ k ) ≡ L p,λ, 0 ( µ k ) .\",\"PeriodicalId\":37257,\"journal\":{\"name\":\"Transactions Issue Mathematics, Azerbaijan National Academy of Sciences\",\"volume\":\"133 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions Issue Mathematics, Azerbaijan National Academy of Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30546/2617-7900.43.1.2023.94\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions Issue Mathematics, Azerbaijan National Academy of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30546/2617-7900.43.1.2023.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
。在rd上,Dunkl算子(cid:8) d k,j (cid:9) d j =1是在rd上与反射群zd2相关联的微分-差分算子。研究了总Morrey空间(dk -总Morrey空间)L p,λ,µ(µk), 0≤λ,µ< D + 2 γ k与R D上的Dunkl算子相关的嵌入。这些空间推广了与R d (dk -Morrey空间)上的Dunkl算子相关的Morrey空间,使得L p,λ(µk)≡L p,λ,λ(µk),以及与R d(修改dk -Morrey空间)上的Dunkl算子相关的修正Morrey空间,使得(cid:101) L p,λ(µk)≡L p,λ, 0(µk)。
Some embeddings into the total Morrey spaces associated with the
Dunkl operator on Rd
. On the R d the Dunkl operators (cid:8) D k,j (cid:9) d j =1 are the differential-difference operators associated with the reflection group Z d 2 on R d . We study some embeddings into the total Morrey space ( D k - total Morrey space) L p,λ,µ ( µ k ) , 0 ≤ λ, µ < d + 2 γ k associated with the Dunkl operator on R d . These spaces generalize the Morrey spaces associated with the Dunkl operator on R d ( D k -Morrey space) so that L p,λ ( µ k ) ≡ L p,λ,λ ( µ k ) and the modified Morrey spaces associated with the Dunkl operator on R d (modified D k -Morrey space) so that (cid:101) L p,λ ( µ k ) ≡ L p,λ, 0 ( µ k ) .