King算子的正逆定理

IF 0.6 Q3 MATHEMATICS
Z. Finta
{"title":"King算子的正逆定理","authors":"Z. Finta","doi":"10.2478/ausm-2020-0005","DOIUrl":null,"url":null,"abstract":"Abstract For the sequence of King operators, we establish a direct approximation theorem via the first order Ditzian-Totik modulus of smoothness, and a converse approximation theorem of Berens-Lorentz-type.","PeriodicalId":43054,"journal":{"name":"Acta Universitatis Sapientiae-Mathematica","volume":"703 1","pages":"85 - 96"},"PeriodicalIF":0.6000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Direct and converse theorems for King operators\",\"authors\":\"Z. Finta\",\"doi\":\"10.2478/ausm-2020-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For the sequence of King operators, we establish a direct approximation theorem via the first order Ditzian-Totik modulus of smoothness, and a converse approximation theorem of Berens-Lorentz-type.\",\"PeriodicalId\":43054,\"journal\":{\"name\":\"Acta Universitatis Sapientiae-Mathematica\",\"volume\":\"703 1\",\"pages\":\"85 - 96\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae-Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausm-2020-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae-Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2020-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要对于King算子序列,我们利用光滑的一阶Ditzian-Totik模建立了一个直接逼近定理,以及一个berens - lorentz型的逆逼近定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct and converse theorems for King operators
Abstract For the sequence of King operators, we establish a direct approximation theorem via the first order Ditzian-Totik modulus of smoothness, and a converse approximation theorem of Berens-Lorentz-type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊介绍: The Acta Universitatis Sapientiae Mathematica publishes original papers in English in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信