{"title":"King算子的正逆定理","authors":"Z. Finta","doi":"10.2478/ausm-2020-0005","DOIUrl":null,"url":null,"abstract":"Abstract For the sequence of King operators, we establish a direct approximation theorem via the first order Ditzian-Totik modulus of smoothness, and a converse approximation theorem of Berens-Lorentz-type.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Direct and converse theorems for King operators\",\"authors\":\"Z. Finta\",\"doi\":\"10.2478/ausm-2020-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For the sequence of King operators, we establish a direct approximation theorem via the first order Ditzian-Totik modulus of smoothness, and a converse approximation theorem of Berens-Lorentz-type.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausm-2020-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2020-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract For the sequence of King operators, we establish a direct approximation theorem via the first order Ditzian-Totik modulus of smoothness, and a converse approximation theorem of Berens-Lorentz-type.