Hana Mallek, Faïza Ghozzi, F. Gargouri
{"title":"面向大数据环境下的提取-转换-加载操作","authors":"Hana Mallek, Faïza Ghozzi, F. Gargouri","doi":"10.4018/ijskd.2020040105","DOIUrl":null,"url":null,"abstract":"BigDataemergedafterabigexplosionofdatafromtheWeb2.0,digitalsensors,andsocialmedia applications such as Facebook, Twitter, etc. In this constant growth of data, many domains are influenced, especially thedecisional support systemdomain,where the integrationof processes shouldbeadaptedtosupportthishugeamountofdatatoimproveanalysisgoals.Thebasicpurpose ofthisresearcharticleistoadaptextract-transform-loadprocesseswithBigDatatechnologies,in order tosupportnotonlythisevolutionofdatabutalsotheknowledgediscovery.Inthisarticle, anewapproachcalledBigDimensionalETL(BigDimETL)issuggestedtodealwithETLbasic operationsandtakeintoaccountthemultidimensionalstructure.Inordertoacceleratedatahandling, theMapReduceparadigmisusedtoenhancedatawarehousingcapabilitiesandHBaseasadistributed storagemechanism.ExperimentalresultsconfirmthattheETLoperationperformswellespecially withadaptedoperations. KEywORDS Big Data, ETL, Hbase, Map Reduce, Multidimensional Structure","PeriodicalId":13656,"journal":{"name":"Int. J. Sociotechnology Knowl. Dev.","volume":"96 1","pages":"77-95"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Towards Extract-Transform-Load Operations in a Big Data context\",\"authors\":\"Hana Mallek, Faïza Ghozzi, F. Gargouri\",\"doi\":\"10.4018/ijskd.2020040105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BigDataemergedafterabigexplosionofdatafromtheWeb2.0,digitalsensors,andsocialmedia applications such as Facebook, Twitter, etc. In this constant growth of data, many domains are influenced, especially thedecisional support systemdomain,where the integrationof processes shouldbeadaptedtosupportthishugeamountofdatatoimproveanalysisgoals.Thebasicpurpose ofthisresearcharticleistoadaptextract-transform-loadprocesseswithBigDatatechnologies,in order tosupportnotonlythisevolutionofdatabutalsotheknowledgediscovery.Inthisarticle, anewapproachcalledBigDimensionalETL(BigDimETL)issuggestedtodealwithETLbasic operationsandtakeintoaccountthemultidimensionalstructure.Inordertoacceleratedatahandling, theMapReduceparadigmisusedtoenhancedatawarehousingcapabilitiesandHBaseasadistributed storagemechanism.ExperimentalresultsconfirmthattheETLoperationperformswellespecially withadaptedoperations. KEywORDS Big Data, ETL, Hbase, Map Reduce, Multidimensional Structure\",\"PeriodicalId\":13656,\"journal\":{\"name\":\"Int. J. Sociotechnology Knowl. Dev.\",\"volume\":\"96 1\",\"pages\":\"77-95\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Sociotechnology Knowl. Dev.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijskd.2020040105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Sociotechnology Knowl. Dev.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijskd.2020040105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Towards Extract-Transform-Load Operations in a Big Data context
BigDataemergedafterabigexplosionofdatafromtheWeb2.0,digitalsensors,andsocialmedia applications such as Facebook, Twitter, etc. In this constant growth of data, many domains are influenced, especially thedecisional support systemdomain,where the integrationof processes shouldbeadaptedtosupportthishugeamountofdatatoimproveanalysisgoals.Thebasicpurpose ofthisresearcharticleistoadaptextract-transform-loadprocesseswithBigDatatechnologies,in order tosupportnotonlythisevolutionofdatabutalsotheknowledgediscovery.Inthisarticle, anewapproachcalledBigDimensionalETL(BigDimETL)issuggestedtodealwithETLbasic operationsandtakeintoaccountthemultidimensionalstructure.Inordertoacceleratedatahandling, theMapReduceparadigmisusedtoenhancedatawarehousingcapabilitiesandHBaseasadistributed storagemechanism.ExperimentalresultsconfirmthattheETLoperationperformswellespecially withadaptedoperations. KEywORDS Big Data, ETL, Hbase, Map Reduce, Multidimensional Structure