{"title":"基于符号时间序列分析的燃烧不稳定性检测迁移学习","authors":"C. Bhattacharya, A. Ray","doi":"10.1115/1.4050847","DOIUrl":null,"url":null,"abstract":"\n Transfer learning (TL) is a machine learning (ML) tool where the knowledge, acquired from a source domain, is “transferred” to perform a task in a target domain that has (to some extent) a similar setting. The underlying concept does not require the ML method to analyze a new problem from the beginning, and thereby both the learning time and the amount of required target-domain data are reduced for training. An example is the occurrence of thermoacoustic instability (TAI) in combustors, which may cause pressure oscillations, possibly leading to flame extinction as well as undesirable vibrations in the mechanical structures. In this situation, it is difficult to collect useful data from industrial combustion systems, due to the transient nature of TAI phenomena. A feasible solution is the usage of prototypes or emulators, like a Rijke tube, to produce largely similar phenomena. This paper proposes symbolic time-series analysis (STSA)-based TL, where the key idea is to develop a capability of discrimination between stable and unstable operations of a combustor, based on the time-series of pressure oscillations from a data source that contains sufficient information, even if it is not the target regime, and then transfer the learnt models to the target regime. The proposed STSA-based pattern classifier is trained on a previously validated numerical model of a Rijke-tube apparatus. The knowledge of this trained classifier is transferred to classify similar operational regimes in: (i) an experimental Rijke-tube apparatus and (ii) an experimental combustion system apparatus. Results of the proposed TL have been validated by comparison with those of two shallow neural networks (NNs)-based TL and another NN having an additional long short-term memory (LSTM) layer, which serve as benchmarks, in terms of classification accuracy and computational complexity.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"104 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Transfer Learning for Detection of Combustion Instability Via Symbolic Time-Series Analysis\",\"authors\":\"C. Bhattacharya, A. Ray\",\"doi\":\"10.1115/1.4050847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Transfer learning (TL) is a machine learning (ML) tool where the knowledge, acquired from a source domain, is “transferred” to perform a task in a target domain that has (to some extent) a similar setting. The underlying concept does not require the ML method to analyze a new problem from the beginning, and thereby both the learning time and the amount of required target-domain data are reduced for training. An example is the occurrence of thermoacoustic instability (TAI) in combustors, which may cause pressure oscillations, possibly leading to flame extinction as well as undesirable vibrations in the mechanical structures. In this situation, it is difficult to collect useful data from industrial combustion systems, due to the transient nature of TAI phenomena. A feasible solution is the usage of prototypes or emulators, like a Rijke tube, to produce largely similar phenomena. This paper proposes symbolic time-series analysis (STSA)-based TL, where the key idea is to develop a capability of discrimination between stable and unstable operations of a combustor, based on the time-series of pressure oscillations from a data source that contains sufficient information, even if it is not the target regime, and then transfer the learnt models to the target regime. The proposed STSA-based pattern classifier is trained on a previously validated numerical model of a Rijke-tube apparatus. The knowledge of this trained classifier is transferred to classify similar operational regimes in: (i) an experimental Rijke-tube apparatus and (ii) an experimental combustion system apparatus. Results of the proposed TL have been validated by comparison with those of two shallow neural networks (NNs)-based TL and another NN having an additional long short-term memory (LSTM) layer, which serve as benchmarks, in terms of classification accuracy and computational complexity.\",\"PeriodicalId\":54846,\"journal\":{\"name\":\"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme\",\"volume\":\"104 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4050847\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4050847","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Transfer Learning for Detection of Combustion Instability Via Symbolic Time-Series Analysis
Transfer learning (TL) is a machine learning (ML) tool where the knowledge, acquired from a source domain, is “transferred” to perform a task in a target domain that has (to some extent) a similar setting. The underlying concept does not require the ML method to analyze a new problem from the beginning, and thereby both the learning time and the amount of required target-domain data are reduced for training. An example is the occurrence of thermoacoustic instability (TAI) in combustors, which may cause pressure oscillations, possibly leading to flame extinction as well as undesirable vibrations in the mechanical structures. In this situation, it is difficult to collect useful data from industrial combustion systems, due to the transient nature of TAI phenomena. A feasible solution is the usage of prototypes or emulators, like a Rijke tube, to produce largely similar phenomena. This paper proposes symbolic time-series analysis (STSA)-based TL, where the key idea is to develop a capability of discrimination between stable and unstable operations of a combustor, based on the time-series of pressure oscillations from a data source that contains sufficient information, even if it is not the target regime, and then transfer the learnt models to the target regime. The proposed STSA-based pattern classifier is trained on a previously validated numerical model of a Rijke-tube apparatus. The knowledge of this trained classifier is transferred to classify similar operational regimes in: (i) an experimental Rijke-tube apparatus and (ii) an experimental combustion system apparatus. Results of the proposed TL have been validated by comparison with those of two shallow neural networks (NNs)-based TL and another NN having an additional long short-term memory (LSTM) layer, which serve as benchmarks, in terms of classification accuracy and computational complexity.
期刊介绍:
The Journal of Dynamic Systems, Measurement, and Control publishes theoretical and applied original papers in the traditional areas implied by its name, as well as papers in interdisciplinary areas. Theoretical papers should present new theoretical developments and knowledge for controls of dynamical systems together with clear engineering motivation for the new theory. New theory or results that are only of mathematical interest without a clear engineering motivation or have a cursory relevance only are discouraged. "Application" is understood to include modeling, simulation of realistic systems, and corroboration of theory with emphasis on demonstrated practicality.