期权定价的超时间步进算法

K. N. Uprety, H. Khanal, Ananta Upreti
{"title":"期权定价的超时间步进算法","authors":"K. N. Uprety, H. Khanal, Ananta Upreti","doi":"10.3126/sw.v13i13.30539","DOIUrl":null,"url":null,"abstract":"We solve the Black Scholes equation for option pricing numerically using an Explicit finite difference method. To overcome the stability restriction of the explicit scheme for parabolic partial differential equations in the time step size Courant-Friedrichs-Lewy (CFL) condition, we employ a Super Time Stepping (STS) strategy based on modified Chebyshev polynomial. The numerical results show that the STS scheme boasts of large efficiency gains compared to the standard explicit Euler method.","PeriodicalId":21637,"journal":{"name":"Scientific World","volume":"52 1","pages":"51-54"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Super-Time-Stepping Scheme for Option Pricing\",\"authors\":\"K. N. Uprety, H. Khanal, Ananta Upreti\",\"doi\":\"10.3126/sw.v13i13.30539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We solve the Black Scholes equation for option pricing numerically using an Explicit finite difference method. To overcome the stability restriction of the explicit scheme for parabolic partial differential equations in the time step size Courant-Friedrichs-Lewy (CFL) condition, we employ a Super Time Stepping (STS) strategy based on modified Chebyshev polynomial. The numerical results show that the STS scheme boasts of large efficiency gains compared to the standard explicit Euler method.\",\"PeriodicalId\":21637,\"journal\":{\"name\":\"Scientific World\",\"volume\":\"52 1\",\"pages\":\"51-54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific World\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3126/sw.v13i13.30539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific World","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/sw.v13i13.30539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用显式有限差分法对期权定价的Black Scholes方程进行了数值求解。为了克服抛物型偏微分方程显式格式在时间步长Courant-Friedrichs-Lewy (CFL)条件下的稳定性限制,我们采用了一种基于修正Chebyshev多项式的超级时间步进(STS)策略。数值结果表明,与标准显式欧拉方法相比,STS方案具有较大的效率增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Super-Time-Stepping Scheme for Option Pricing
We solve the Black Scholes equation for option pricing numerically using an Explicit finite difference method. To overcome the stability restriction of the explicit scheme for parabolic partial differential equations in the time step size Courant-Friedrichs-Lewy (CFL) condition, we employ a Super Time Stepping (STS) strategy based on modified Chebyshev polynomial. The numerical results show that the STS scheme boasts of large efficiency gains compared to the standard explicit Euler method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信