{"title":"使用架构建模和仿真预测基于区块链的系统的延迟","authors":"Rajitha Yasaweerasinghelage, M. Staples, I. Weber","doi":"10.1109/ICSA.2017.22","DOIUrl":null,"url":null,"abstract":"Blockchain is an emerging technology for sharing transactional data and computation without using a central trusted third party. It is an architectural choice to use a blockchain instead of traditional databases or protocols, and this creates trade-offs between non-functional requirements such as performance, cost, and security. However, little is known about predicting the behaviour of blockchain-based systems. This paper shows the feasibility of using architectural performance modelling and simulation tools to predict the latency of blockchain-based systems. We use established tools and techniques, but explore new blockchain-specific issues such as the configuration of the number of confirmation blocks and inter-block times. We report on a lab-based experimental study using an incident management system, showing predictions of median system level response time with a relative error mostly under 10%. We discuss how the approach can be used to support architectural decision-making, during the design of blockchain-based systems.","PeriodicalId":6599,"journal":{"name":"2017 IEEE International Conference on Software Architecture (ICSA)","volume":"151 1","pages":"253-256"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"81","resultStr":"{\"title\":\"Predicting Latency of Blockchain-Based Systems Using Architectural Modelling and Simulation\",\"authors\":\"Rajitha Yasaweerasinghelage, M. Staples, I. Weber\",\"doi\":\"10.1109/ICSA.2017.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blockchain is an emerging technology for sharing transactional data and computation without using a central trusted third party. It is an architectural choice to use a blockchain instead of traditional databases or protocols, and this creates trade-offs between non-functional requirements such as performance, cost, and security. However, little is known about predicting the behaviour of blockchain-based systems. This paper shows the feasibility of using architectural performance modelling and simulation tools to predict the latency of blockchain-based systems. We use established tools and techniques, but explore new blockchain-specific issues such as the configuration of the number of confirmation blocks and inter-block times. We report on a lab-based experimental study using an incident management system, showing predictions of median system level response time with a relative error mostly under 10%. We discuss how the approach can be used to support architectural decision-making, during the design of blockchain-based systems.\",\"PeriodicalId\":6599,\"journal\":{\"name\":\"2017 IEEE International Conference on Software Architecture (ICSA)\",\"volume\":\"151 1\",\"pages\":\"253-256\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"81\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Software Architecture (ICSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSA.2017.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Software Architecture (ICSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSA.2017.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting Latency of Blockchain-Based Systems Using Architectural Modelling and Simulation
Blockchain is an emerging technology for sharing transactional data and computation without using a central trusted third party. It is an architectural choice to use a blockchain instead of traditional databases or protocols, and this creates trade-offs between non-functional requirements such as performance, cost, and security. However, little is known about predicting the behaviour of blockchain-based systems. This paper shows the feasibility of using architectural performance modelling and simulation tools to predict the latency of blockchain-based systems. We use established tools and techniques, but explore new blockchain-specific issues such as the configuration of the number of confirmation blocks and inter-block times. We report on a lab-based experimental study using an incident management system, showing predictions of median system level response time with a relative error mostly under 10%. We discuss how the approach can be used to support architectural decision-making, during the design of blockchain-based systems.