Ffowcs williams - hawkins方程的实现:利用边界层跳闸机制预测翼型的远场噪声

Andrew Bodling, Anupam Sharma
{"title":"Ffowcs williams - hawkins方程的实现:利用边界层跳闸机制预测翼型的远场噪声","authors":"Andrew Bodling, Anupam Sharma","doi":"10.1115/FEDSM2018-83385","DOIUrl":null,"url":null,"abstract":"A study was done to investigate how boundary layer tripping mechanisms can affect the ability of a permeable surface FW-H solver to predict the far field noise emanating from an airfoil trailing edge. The far field noise in a baseline airfoil as well as the baseline airfoil fitted with fin let fences was analyzed. Two numerical boundary layer tripping mechanisms were implemented. The results illustrated the importance of choosing a permeable integration surface that is outside any high frequency waves emanating from the trip region. The results also illustrated the importance of choosing a boundary layer tripping mechanism that minimizes any extraneous noise so that an integration surface can be taken close to the airfoil.","PeriodicalId":23480,"journal":{"name":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Implementation of the Ffowcs Williams-Hawkings Equation: Predicting the Far Field Noise From Airfoils While Using Boundary Layer Tripping Mechanisms\",\"authors\":\"Andrew Bodling, Anupam Sharma\",\"doi\":\"10.1115/FEDSM2018-83385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A study was done to investigate how boundary layer tripping mechanisms can affect the ability of a permeable surface FW-H solver to predict the far field noise emanating from an airfoil trailing edge. The far field noise in a baseline airfoil as well as the baseline airfoil fitted with fin let fences was analyzed. Two numerical boundary layer tripping mechanisms were implemented. The results illustrated the importance of choosing a permeable integration surface that is outside any high frequency waves emanating from the trip region. The results also illustrated the importance of choosing a boundary layer tripping mechanism that minimizes any extraneous noise so that an integration surface can be taken close to the airfoil.\",\"PeriodicalId\":23480,\"journal\":{\"name\":\"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/FEDSM2018-83385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/FEDSM2018-83385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

一项研究是为了研究边界层跳位机制如何影响可渗透表面FW-H求解器预测翼型后缘发出的远场噪声的能力。分析了基线翼型的远场噪声,以及安装翅片挡板的基线翼型。实现了两种数值边界层脱扣机制。结果表明,选择一个可渗透的积分面,在任何高频波从行程区域发出的重要性。结果也说明了选择一个边界层跳闸机制的重要性,最大限度地减少任何外来的噪音,使一个集成表面可以采取接近翼型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of the Ffowcs Williams-Hawkings Equation: Predicting the Far Field Noise From Airfoils While Using Boundary Layer Tripping Mechanisms
A study was done to investigate how boundary layer tripping mechanisms can affect the ability of a permeable surface FW-H solver to predict the far field noise emanating from an airfoil trailing edge. The far field noise in a baseline airfoil as well as the baseline airfoil fitted with fin let fences was analyzed. Two numerical boundary layer tripping mechanisms were implemented. The results illustrated the importance of choosing a permeable integration surface that is outside any high frequency waves emanating from the trip region. The results also illustrated the importance of choosing a boundary layer tripping mechanism that minimizes any extraneous noise so that an integration surface can be taken close to the airfoil.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信