Mark Mikofski, M. Lynn, James Byrne, M. Hamer, A. Neubert, J. Newmiller
{"title":"使用子模块不匹配计算的大型光伏系统遮阳的准确性能预测","authors":"Mark Mikofski, M. Lynn, James Byrne, M. Hamer, A. Neubert, J. Newmiller","doi":"10.1109/PVSC.2018.8547323","DOIUrl":null,"url":null,"abstract":"Accurate performance prediction of large PV systems with shading is challenging because computational complexity increases with system size. Solar Farmer is a new PV performance model with 3-D shading. Comparing predictions with measurements from the NIST PV test bed we observed a decrease in the annual difference of 17% between module and submodule shading. By varying the resolution of shading from module to cell level, we also determined that 5 points persubmodule, resulting in a 0.5% annual difference, was sufficient to accurately predict performance of shaded systems. Therefore, a balance of accuracy and computational expense was achieved allowing performance predictions of large PV systems with shade.","PeriodicalId":6558,"journal":{"name":"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)","volume":"189 1","pages":"3635-3639"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Accurate Performance Predictions of Large PV Systems with Shading using Submodule Mismatch Calculation\",\"authors\":\"Mark Mikofski, M. Lynn, James Byrne, M. Hamer, A. Neubert, J. Newmiller\",\"doi\":\"10.1109/PVSC.2018.8547323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate performance prediction of large PV systems with shading is challenging because computational complexity increases with system size. Solar Farmer is a new PV performance model with 3-D shading. Comparing predictions with measurements from the NIST PV test bed we observed a decrease in the annual difference of 17% between module and submodule shading. By varying the resolution of shading from module to cell level, we also determined that 5 points persubmodule, resulting in a 0.5% annual difference, was sufficient to accurately predict performance of shaded systems. Therefore, a balance of accuracy and computational expense was achieved allowing performance predictions of large PV systems with shade.\",\"PeriodicalId\":6558,\"journal\":{\"name\":\"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)\",\"volume\":\"189 1\",\"pages\":\"3635-3639\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2018.8547323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2018.8547323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Accurate Performance Predictions of Large PV Systems with Shading using Submodule Mismatch Calculation
Accurate performance prediction of large PV systems with shading is challenging because computational complexity increases with system size. Solar Farmer is a new PV performance model with 3-D shading. Comparing predictions with measurements from the NIST PV test bed we observed a decrease in the annual difference of 17% between module and submodule shading. By varying the resolution of shading from module to cell level, we also determined that 5 points persubmodule, resulting in a 0.5% annual difference, was sufficient to accurately predict performance of shaded systems. Therefore, a balance of accuracy and computational expense was achieved allowing performance predictions of large PV systems with shade.