利用机器学习算法分析Twitter大数据对Covid- 19大流行的情绪

Q2 Social Sciences
Awny Sayed, M. Gomaa, Mostafa Medhat Nazier, An International
{"title":"利用机器学习算法分析Twitter大数据对Covid- 19大流行的情绪","authors":"Awny Sayed, M. Gomaa, Mostafa Medhat Nazier, An International","doi":"10.18576/isl/120825","DOIUrl":null,"url":null,"abstract":": This paper analyzes users' reactions on Twitter to the COVID-19 pandemic, using machine learning and data mining algorithms to classify tweets according to economic and health fears. A large dataset of tweets is explored, extracted, transformed, loaded, cleansed, and analyzed. The proposed framework improves prediction quality with a proposed dictionary that is used to classify tweets. The study compares four supervised machine learning algorithms and finds that people discuss the pandemic's dangers from economic and health perspectives with equal frequency. The Naive Bayes algorithm achieves the highest percentage of correct predictions.","PeriodicalId":36540,"journal":{"name":"Information Sciences Letters","volume":"661 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sentiment Analysis on Twitter's Big Data Against the Covid- 19 Pandemic Using Machine Learning Algorithms\",\"authors\":\"Awny Sayed, M. Gomaa, Mostafa Medhat Nazier, An International\",\"doi\":\"10.18576/isl/120825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": This paper analyzes users' reactions on Twitter to the COVID-19 pandemic, using machine learning and data mining algorithms to classify tweets according to economic and health fears. A large dataset of tweets is explored, extracted, transformed, loaded, cleansed, and analyzed. The proposed framework improves prediction quality with a proposed dictionary that is used to classify tweets. The study compares four supervised machine learning algorithms and finds that people discuss the pandemic's dangers from economic and health perspectives with equal frequency. The Naive Bayes algorithm achieves the highest percentage of correct predictions.\",\"PeriodicalId\":36540,\"journal\":{\"name\":\"Information Sciences Letters\",\"volume\":\"661 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Sciences Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18576/isl/120825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18576/isl/120825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了用户在Twitter上对COVID-19大流行的反应,使用机器学习和数据挖掘算法根据经济和健康担忧对推文进行分类。一个庞大的tweets数据集被探索、提取、转换、加载、清理和分析。该框架通过一个用于分类推文的字典来提高预测质量。该研究比较了四种监督式机器学习算法,发现人们从经济和健康角度讨论疫情危险的频率相同。朴素贝叶斯算法的预测准确率最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentiment Analysis on Twitter's Big Data Against the Covid- 19 Pandemic Using Machine Learning Algorithms
: This paper analyzes users' reactions on Twitter to the COVID-19 pandemic, using machine learning and data mining algorithms to classify tweets according to economic and health fears. A large dataset of tweets is explored, extracted, transformed, loaded, cleansed, and analyzed. The proposed framework improves prediction quality with a proposed dictionary that is used to classify tweets. The study compares four supervised machine learning algorithms and finds that people discuss the pandemic's dangers from economic and health perspectives with equal frequency. The Naive Bayes algorithm achieves the highest percentage of correct predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Sciences Letters
Information Sciences Letters Social Sciences-Library and Information Sciences
自引率
0.00%
发文量
200
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信