Mikkel Abrahamsen, Anna Adamaszek, K. Bringmann, Vincent Cohen-Addad, M. Mehr, E. Rotenberg, A. Roytman, M. Thorup
{"title":"快击剑","authors":"Mikkel Abrahamsen, Anna Adamaszek, K. Bringmann, Vincent Cohen-Addad, M. Mehr, E. Rotenberg, A. Roytman, M. Thorup","doi":"10.1145/3188745.3188878","DOIUrl":null,"url":null,"abstract":"We consider very natural ”fence enclosure” problems studied by Capoyleas, Rote, and Woeginger and Arkin, Khuller, and Mitchell in the early 90s. Given a set S of n points in the plane, we aim at finding a set of closed curves such that (1) each point is enclosed by a curve and (2) the total length of the curves is minimized. We consider two main variants. In the first variant, we pay a unit cost per curve in addition to the total length of the curves. An equivalent formulation of this version is that we have to enclose n unit disks, paying only the total length of the enclosing curves. In the other variant, we are allowed to use at most k closed curves and pay no cost per curve. For the variant with at most k closed curves,we present an algorithm that is polynomialin bothn andk. For the variant with unit cost per curve, or unit disks, we presenta near-linear time algorithm. Capoyleas, Rote, and Woeginger solved the problem with at most k curves in nO(k) time. Arkin, Khuller, and Mitchell used this to solve the unit cost per curve version in exponential time. At the time, they conjectured that the problem with k curves is NP-hard for general k. Our polynomial time algorithm refutes this unless P equals NP.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fast fencing\",\"authors\":\"Mikkel Abrahamsen, Anna Adamaszek, K. Bringmann, Vincent Cohen-Addad, M. Mehr, E. Rotenberg, A. Roytman, M. Thorup\",\"doi\":\"10.1145/3188745.3188878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider very natural ”fence enclosure” problems studied by Capoyleas, Rote, and Woeginger and Arkin, Khuller, and Mitchell in the early 90s. Given a set S of n points in the plane, we aim at finding a set of closed curves such that (1) each point is enclosed by a curve and (2) the total length of the curves is minimized. We consider two main variants. In the first variant, we pay a unit cost per curve in addition to the total length of the curves. An equivalent formulation of this version is that we have to enclose n unit disks, paying only the total length of the enclosing curves. In the other variant, we are allowed to use at most k closed curves and pay no cost per curve. For the variant with at most k closed curves,we present an algorithm that is polynomialin bothn andk. For the variant with unit cost per curve, or unit disks, we presenta near-linear time algorithm. Capoyleas, Rote, and Woeginger solved the problem with at most k curves in nO(k) time. Arkin, Khuller, and Mitchell used this to solve the unit cost per curve version in exponential time. At the time, they conjectured that the problem with k curves is NP-hard for general k. Our polynomial time algorithm refutes this unless P equals NP.\",\"PeriodicalId\":20593,\"journal\":{\"name\":\"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3188745.3188878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We consider very natural ”fence enclosure” problems studied by Capoyleas, Rote, and Woeginger and Arkin, Khuller, and Mitchell in the early 90s. Given a set S of n points in the plane, we aim at finding a set of closed curves such that (1) each point is enclosed by a curve and (2) the total length of the curves is minimized. We consider two main variants. In the first variant, we pay a unit cost per curve in addition to the total length of the curves. An equivalent formulation of this version is that we have to enclose n unit disks, paying only the total length of the enclosing curves. In the other variant, we are allowed to use at most k closed curves and pay no cost per curve. For the variant with at most k closed curves,we present an algorithm that is polynomialin bothn andk. For the variant with unit cost per curve, or unit disks, we presenta near-linear time algorithm. Capoyleas, Rote, and Woeginger solved the problem with at most k curves in nO(k) time. Arkin, Khuller, and Mitchell used this to solve the unit cost per curve version in exponential time. At the time, they conjectured that the problem with k curves is NP-hard for general k. Our polynomial time algorithm refutes this unless P equals NP.