{"title":"非线性逆问题迭代求解中Hessian的偏振张量近似","authors":"F. Watson, M. G. Crabb, W. Lionheart","doi":"10.1080/17415977.2021.1951722","DOIUrl":null,"url":null,"abstract":"For many inverse parameter problems for partial differential equations in which the domain contains only well-separated objects, an asymptotic solution to the forward problem involving ‘polarization tensors’ exists. These are functions of the size and material contrast of inclusions, thereby describing the saturation component of the non-linearity. In this paper, we show how such an asymptotic series can be applied to non-linear least-squares reconstruction problems, by deriving an approximate diagonal Hessian matrix for the data misfit term. Often, the Hessian matrix can play a vital role in dealing with the non-linearity, generating good update directions which accelerate the solution towards a global minimum, but the computational cost can make direct calculation infeasible. Since the polarization tensor approximation assumes sufficient separation between inclusions, our approximate Hessian does not account for non-linearity in the form of lack of superposition in the inverse problem. It does, however, account for the non-linear saturation of the change in the data with increasing material contrast. We, therefore, propose to use it as an initial Hessian for quasi-Newton schemes. We present numerical experimentation into the accuracy and reconstruction performance of the approximate Hessian for the case of electrical impedance tomography, providing a proof of principle of the reconstruction scheme.","PeriodicalId":54926,"journal":{"name":"Inverse Problems in Science and Engineering","volume":"18 1","pages":"2804 - 2830"},"PeriodicalIF":1.1000,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A polarization tensor approximation for the Hessian in iterative solvers for non-linear inverse problems\",\"authors\":\"F. Watson, M. G. Crabb, W. Lionheart\",\"doi\":\"10.1080/17415977.2021.1951722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For many inverse parameter problems for partial differential equations in which the domain contains only well-separated objects, an asymptotic solution to the forward problem involving ‘polarization tensors’ exists. These are functions of the size and material contrast of inclusions, thereby describing the saturation component of the non-linearity. In this paper, we show how such an asymptotic series can be applied to non-linear least-squares reconstruction problems, by deriving an approximate diagonal Hessian matrix for the data misfit term. Often, the Hessian matrix can play a vital role in dealing with the non-linearity, generating good update directions which accelerate the solution towards a global minimum, but the computational cost can make direct calculation infeasible. Since the polarization tensor approximation assumes sufficient separation between inclusions, our approximate Hessian does not account for non-linearity in the form of lack of superposition in the inverse problem. It does, however, account for the non-linear saturation of the change in the data with increasing material contrast. We, therefore, propose to use it as an initial Hessian for quasi-Newton schemes. We present numerical experimentation into the accuracy and reconstruction performance of the approximate Hessian for the case of electrical impedance tomography, providing a proof of principle of the reconstruction scheme.\",\"PeriodicalId\":54926,\"journal\":{\"name\":\"Inverse Problems in Science and Engineering\",\"volume\":\"18 1\",\"pages\":\"2804 - 2830\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems in Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/17415977.2021.1951722\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems in Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17415977.2021.1951722","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A polarization tensor approximation for the Hessian in iterative solvers for non-linear inverse problems
For many inverse parameter problems for partial differential equations in which the domain contains only well-separated objects, an asymptotic solution to the forward problem involving ‘polarization tensors’ exists. These are functions of the size and material contrast of inclusions, thereby describing the saturation component of the non-linearity. In this paper, we show how such an asymptotic series can be applied to non-linear least-squares reconstruction problems, by deriving an approximate diagonal Hessian matrix for the data misfit term. Often, the Hessian matrix can play a vital role in dealing with the non-linearity, generating good update directions which accelerate the solution towards a global minimum, but the computational cost can make direct calculation infeasible. Since the polarization tensor approximation assumes sufficient separation between inclusions, our approximate Hessian does not account for non-linearity in the form of lack of superposition in the inverse problem. It does, however, account for the non-linear saturation of the change in the data with increasing material contrast. We, therefore, propose to use it as an initial Hessian for quasi-Newton schemes. We present numerical experimentation into the accuracy and reconstruction performance of the approximate Hessian for the case of electrical impedance tomography, providing a proof of principle of the reconstruction scheme.
期刊介绍:
Inverse Problems in Science and Engineering provides an international forum for the discussion of conceptual ideas and methods for the practical solution of applied inverse problems. The Journal aims to address the needs of practising engineers, mathematicians and researchers and to serve as a focal point for the quick communication of ideas. Papers must provide several non-trivial examples of practical applications. Multidisciplinary applied papers are particularly welcome.
Topics include:
-Shape design: determination of shape, size and location of domains (shape identification or optimization in acoustics, aerodynamics, electromagnets, etc; detection of voids and cracks).
-Material properties: determination of physical properties of media.
-Boundary values/initial values: identification of the proper boundary conditions and/or initial conditions (tomographic problems involving X-rays, ultrasonics, optics, thermal sources etc; determination of thermal, stress/strain, electromagnetic, fluid flow etc. boundary conditions on inaccessible boundaries; determination of initial chemical composition, etc.).
-Forces and sources: determination of the unknown external forces or inputs acting on a domain (structural dynamic modification and reconstruction) and internal concentrated and distributed sources/sinks (sources of heat, noise, electromagnetic radiation, etc.).
-Governing equations: inference of analytic forms of partial and/or integral equations governing the variation of measured field quantities.