自适应定量敏感性映射的概率偶极子反演

Jinwei Zhang, Hang Zhang, M. Sabuncu, P. Spincemaille, Thanh D. Nguyen, Yi Wang
{"title":"自适应定量敏感性映射的概率偶极子反演","authors":"Jinwei Zhang, Hang Zhang, M. Sabuncu, P. Spincemaille, Thanh D. Nguyen, Yi Wang","doi":"10.59275/j.melba.2021-bbf2","DOIUrl":null,"url":null,"abstract":"A learning-based posterior distribution estimation method, Probabilistic Dipole Inversion (PDI), is proposed to solve the quantitative susceptibility mapping (QSM) inverse problem in MRI with uncertainty estimation. In PDI, a deep convolutional neural network (CNN) is used to represent the multivariate Gaussian distribution as the approximate posterior distribution of susceptibility given the input measured field. Such CNN is first trained on healthy subjects via posterior density estimation, where the training dataset contains samples from the true posterior distribution. Domain adaptations are then deployed on patient datasets with new pathologies not included in pre-training, where PDI updates the pre-trained CNN’s weights in an unsupervised fashion by minimizing the Kullback-Leibler divergence between the approximate posterior distribution represented by CNN and the true posterior distribution from the likelihood distribution of a known physical model and pre-defined prior distribution. Based on our experiments, PDI provides additional uncertainty estimation compared to the conventional MAP approach, while addressing the potential issue of the pre-trained CNN when test data deviates from training. Our code is available at https://github.com/Jinwei1209/Bayesian_QSM.","PeriodicalId":75083,"journal":{"name":"The journal of machine learning for biomedical imaging","volume":"745 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Probabilistic dipole inversion for adaptive quantitative susceptibility mapping\",\"authors\":\"Jinwei Zhang, Hang Zhang, M. Sabuncu, P. Spincemaille, Thanh D. Nguyen, Yi Wang\",\"doi\":\"10.59275/j.melba.2021-bbf2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A learning-based posterior distribution estimation method, Probabilistic Dipole Inversion (PDI), is proposed to solve the quantitative susceptibility mapping (QSM) inverse problem in MRI with uncertainty estimation. In PDI, a deep convolutional neural network (CNN) is used to represent the multivariate Gaussian distribution as the approximate posterior distribution of susceptibility given the input measured field. Such CNN is first trained on healthy subjects via posterior density estimation, where the training dataset contains samples from the true posterior distribution. Domain adaptations are then deployed on patient datasets with new pathologies not included in pre-training, where PDI updates the pre-trained CNN’s weights in an unsupervised fashion by minimizing the Kullback-Leibler divergence between the approximate posterior distribution represented by CNN and the true posterior distribution from the likelihood distribution of a known physical model and pre-defined prior distribution. Based on our experiments, PDI provides additional uncertainty estimation compared to the conventional MAP approach, while addressing the potential issue of the pre-trained CNN when test data deviates from training. Our code is available at https://github.com/Jinwei1209/Bayesian_QSM.\",\"PeriodicalId\":75083,\"journal\":{\"name\":\"The journal of machine learning for biomedical imaging\",\"volume\":\"745 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The journal of machine learning for biomedical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59275/j.melba.2021-bbf2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The journal of machine learning for biomedical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59275/j.melba.2021-bbf2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种基于学习的后验分布估计方法——概率偶极子反演(PDI),以解决MRI定量敏感性映射(QSM)的不确定性反演问题。在PDI中,使用深度卷积神经网络(CNN)将敏感性的多元高斯分布表示为给定输入测量场的近似后验分布。这种CNN首先通过后验密度估计在健康受试者上训练,其中训练数据集包含来自真实后验分布的样本。然后将域适应部署在预训练中未包含的新病理的患者数据集上,其中PDI通过最小化由CNN表示的近似后验分布与来自已知物理模型和预定义先验分布的似然分布的真实后验分布之间的Kullback-Leibler散度,以无监督的方式更新预训练的CNN的权值。根据我们的实验,与传统的MAP方法相比,PDI提供了额外的不确定性估计,同时解决了当测试数据偏离训练数据时预训练CNN的潜在问题。我们的代码可在https://github.com/Jinwei1209/Bayesian_QSM上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic dipole inversion for adaptive quantitative susceptibility mapping
A learning-based posterior distribution estimation method, Probabilistic Dipole Inversion (PDI), is proposed to solve the quantitative susceptibility mapping (QSM) inverse problem in MRI with uncertainty estimation. In PDI, a deep convolutional neural network (CNN) is used to represent the multivariate Gaussian distribution as the approximate posterior distribution of susceptibility given the input measured field. Such CNN is first trained on healthy subjects via posterior density estimation, where the training dataset contains samples from the true posterior distribution. Domain adaptations are then deployed on patient datasets with new pathologies not included in pre-training, where PDI updates the pre-trained CNN’s weights in an unsupervised fashion by minimizing the Kullback-Leibler divergence between the approximate posterior distribution represented by CNN and the true posterior distribution from the likelihood distribution of a known physical model and pre-defined prior distribution. Based on our experiments, PDI provides additional uncertainty estimation compared to the conventional MAP approach, while addressing the potential issue of the pre-trained CNN when test data deviates from training. Our code is available at https://github.com/Jinwei1209/Bayesian_QSM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信