{"title":"FTHR: noc基于超立方体的容错路由","authors":"R. Kourdy, Amir Rajabzadeh","doi":"10.1109/ICCKE48569.2019.8965117","DOIUrl":null,"url":null,"abstract":"Network-on-chips are a novel communications infrastructure for decoupling the communication elements from processing cores, with the goal of eliminating the challenges of many cores systems. One of the most important NoCs challenges is fault tolerance. This article tries to resolve the challenge into separate ways i.e., topology and routing. The proposed topology is called fault tolerant Hypercube-base NoC (HNoC) and the proposed routing algorithm is called Fault Tolerant Hypercube-based Routing (FTHR). The FTHR was simulated in a HNoC topology in NS-2 standard simulator. The FTHR was evaluated using 3D to 10D NoCs with 8 to 2014 cores in normal and faulty conditions. The results of the experiments show that the HNoC packet loss by FTHR routing varies between 75.0% and 98.16% depending on the different NoC dimensions. This high degree of fault tolerance is because of router degree and the diversity of paths in HNoC and also applied innovations in the FTHR routing. The results also show that the FTHR routing has reasonable outcome and is capable of tolerance about 100% of router and link faults in permanent and transient timing.","PeriodicalId":6685,"journal":{"name":"2019 9th International Conference on Computer and Knowledge Engineering (ICCKE)","volume":"283 1","pages":"331-338"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FTHR: Fault Tolerant Hypercube-based Routing for NoCs\",\"authors\":\"R. Kourdy, Amir Rajabzadeh\",\"doi\":\"10.1109/ICCKE48569.2019.8965117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network-on-chips are a novel communications infrastructure for decoupling the communication elements from processing cores, with the goal of eliminating the challenges of many cores systems. One of the most important NoCs challenges is fault tolerance. This article tries to resolve the challenge into separate ways i.e., topology and routing. The proposed topology is called fault tolerant Hypercube-base NoC (HNoC) and the proposed routing algorithm is called Fault Tolerant Hypercube-based Routing (FTHR). The FTHR was simulated in a HNoC topology in NS-2 standard simulator. The FTHR was evaluated using 3D to 10D NoCs with 8 to 2014 cores in normal and faulty conditions. The results of the experiments show that the HNoC packet loss by FTHR routing varies between 75.0% and 98.16% depending on the different NoC dimensions. This high degree of fault tolerance is because of router degree and the diversity of paths in HNoC and also applied innovations in the FTHR routing. The results also show that the FTHR routing has reasonable outcome and is capable of tolerance about 100% of router and link faults in permanent and transient timing.\",\"PeriodicalId\":6685,\"journal\":{\"name\":\"2019 9th International Conference on Computer and Knowledge Engineering (ICCKE)\",\"volume\":\"283 1\",\"pages\":\"331-338\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 9th International Conference on Computer and Knowledge Engineering (ICCKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCKE48569.2019.8965117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 9th International Conference on Computer and Knowledge Engineering (ICCKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCKE48569.2019.8965117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FTHR: Fault Tolerant Hypercube-based Routing for NoCs
Network-on-chips are a novel communications infrastructure for decoupling the communication elements from processing cores, with the goal of eliminating the challenges of many cores systems. One of the most important NoCs challenges is fault tolerance. This article tries to resolve the challenge into separate ways i.e., topology and routing. The proposed topology is called fault tolerant Hypercube-base NoC (HNoC) and the proposed routing algorithm is called Fault Tolerant Hypercube-based Routing (FTHR). The FTHR was simulated in a HNoC topology in NS-2 standard simulator. The FTHR was evaluated using 3D to 10D NoCs with 8 to 2014 cores in normal and faulty conditions. The results of the experiments show that the HNoC packet loss by FTHR routing varies between 75.0% and 98.16% depending on the different NoC dimensions. This high degree of fault tolerance is because of router degree and the diversity of paths in HNoC and also applied innovations in the FTHR routing. The results also show that the FTHR routing has reasonable outcome and is capable of tolerance about 100% of router and link faults in permanent and transient timing.