Felix Joos, Jaehoon Kim, Daniela Kühn, Deryk Osthus
{"title":"超图正则性与随机抽样","authors":"Felix Joos, Jaehoon Kim, Daniela Kühn, Deryk Osthus","doi":"10.1002/rsa.21126","DOIUrl":null,"url":null,"abstract":"Suppose that a k ‐uniform hypergraph H satisfies a certain regularity instance (that is, there is a partition of H given by the hypergraph regularity lemma into a bounded number of quasirandom subhypergraphs of prescribed densities). We prove that with high probability a large enough uniform random sample of the vertex set of H also admits the same regularity instance. Here the crucial feature is that the error term measuring the quasirandomness of the subhypergraphs requires only an arbitrarily small additive correction. This has applications to combinatorial property testing. The graph case of the sampling result was proved by Alon, Fischer, Newman and Shapira.","PeriodicalId":54523,"journal":{"name":"Random Structures & Algorithms","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypergraph regularity and random sampling\",\"authors\":\"Felix Joos, Jaehoon Kim, Daniela Kühn, Deryk Osthus\",\"doi\":\"10.1002/rsa.21126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Suppose that a k ‐uniform hypergraph H satisfies a certain regularity instance (that is, there is a partition of H given by the hypergraph regularity lemma into a bounded number of quasirandom subhypergraphs of prescribed densities). We prove that with high probability a large enough uniform random sample of the vertex set of H also admits the same regularity instance. Here the crucial feature is that the error term measuring the quasirandomness of the subhypergraphs requires only an arbitrarily small additive correction. This has applications to combinatorial property testing. The graph case of the sampling result was proved by Alon, Fischer, Newman and Shapira.\",\"PeriodicalId\":54523,\"journal\":{\"name\":\"Random Structures & Algorithms\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Structures & Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/rsa.21126\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures & Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21126","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Suppose that a k ‐uniform hypergraph H satisfies a certain regularity instance (that is, there is a partition of H given by the hypergraph regularity lemma into a bounded number of quasirandom subhypergraphs of prescribed densities). We prove that with high probability a large enough uniform random sample of the vertex set of H also admits the same regularity instance. Here the crucial feature is that the error term measuring the quasirandomness of the subhypergraphs requires only an arbitrarily small additive correction. This has applications to combinatorial property testing. The graph case of the sampling result was proved by Alon, Fischer, Newman and Shapira.
期刊介绍:
It is the aim of this journal to meet two main objectives: to cover the latest research on discrete random structures, and to present applications of such research to problems in combinatorics and computer science. The goal is to provide a natural home for a significant body of current research, and a useful forum for ideas on future studies in randomness.
Results concerning random graphs, hypergraphs, matroids, trees, mappings, permutations, matrices, sets and orders, as well as stochastic graph processes and networks are presented with particular emphasis on the use of probabilistic methods in combinatorics as developed by Paul Erdõs. The journal focuses on probabilistic algorithms, average case analysis of deterministic algorithms, and applications of probabilistic methods to cryptography, data structures, searching and sorting. The journal also devotes space to such areas of probability theory as percolation, random walks and combinatorial aspects of probability.