拟普通曲面的Milnor纤维边界

IF 0.4 Q4 MATHEMATICS
G. Kennedy, Lee J. McEwan
{"title":"拟普通曲面的Milnor纤维边界","authors":"G. Kennedy, Lee J. McEwan","doi":"10.5427/JSING.2019.19C","DOIUrl":null,"url":null,"abstract":"We give a recursive formula, expressed in terms of the characteristic tuples, for the Betti numbers of the boundary of the Milnor fiber of an irreducible quasi-ordinary surface. The singular locus of the surface consists of two components, and for each component we introduce a sequence of increasingly simpler surfaces. Our recursion depends on a detailed comparison of these two sequences. In the final section, we indicate how we expect pieces of these associated surfaces to glue together to reconstruct the Milnor fiber and its boundary.","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2018-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Milnor Fiber Boundary of a Quasi-Ordinary Surface\",\"authors\":\"G. Kennedy, Lee J. McEwan\",\"doi\":\"10.5427/JSING.2019.19C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a recursive formula, expressed in terms of the characteristic tuples, for the Betti numbers of the boundary of the Milnor fiber of an irreducible quasi-ordinary surface. The singular locus of the surface consists of two components, and for each component we introduce a sequence of increasingly simpler surfaces. Our recursion depends on a detailed comparison of these two sequences. In the final section, we indicate how we expect pieces of these associated surfaces to glue together to reconstruct the Milnor fiber and its boundary.\",\"PeriodicalId\":44411,\"journal\":{\"name\":\"Journal of Singularities\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2018-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Singularities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5427/JSING.2019.19C\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/JSING.2019.19C","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给出了一类不可约拟普通曲面上Milnor纤维边界的Betti数的特征元组的递推公式。曲面的奇异轨迹由两个分量组成,对于每个分量,我们引入一系列越来越简单的曲面。我们的递归依赖于这两个序列的详细比较。在最后一节中,我们指出了我们如何期望这些相关表面的碎片粘合在一起,以重建米尔诺纤维及其边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Milnor Fiber Boundary of a Quasi-Ordinary Surface
We give a recursive formula, expressed in terms of the characteristic tuples, for the Betti numbers of the boundary of the Milnor fiber of an irreducible quasi-ordinary surface. The singular locus of the surface consists of two components, and for each component we introduce a sequence of increasingly simpler surfaces. Our recursion depends on a detailed comparison of these two sequences. In the final section, we indicate how we expect pieces of these associated surfaces to glue together to reconstruct the Milnor fiber and its boundary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信