高周长MaxCut的显式矢量算法

Jessica Thompson, Ojas D. Parekh, Kunal Marwaha
{"title":"高周长MaxCut的显式矢量算法","authors":"Jessica Thompson, Ojas D. Parekh, Kunal Marwaha","doi":"10.1137/1.9781611977066.17","DOIUrl":null,"url":null,"abstract":"We give an approximation algorithm for MaxCut and provide guarantees on the average fraction of edges cut on $d$-regular graphs of girth $\\geq 2k$. For every $d \\geq 3$ and $k \\geq 4$, our approximation guarantees are better than those of all other classical and quantum algorithms known to the authors. Our algorithm constructs an explicit vector solution to the standard semidefinite relaxation of MaxCut and applies hyperplane rounding. It may be viewed as a simplification of the previously best known technique, which approximates Gaussian wave processes on the infinite $d$-regular tree.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"17 1","pages":"238-246"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An explicit vector algorithm for high-girth MaxCut\",\"authors\":\"Jessica Thompson, Ojas D. Parekh, Kunal Marwaha\",\"doi\":\"10.1137/1.9781611977066.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give an approximation algorithm for MaxCut and provide guarantees on the average fraction of edges cut on $d$-regular graphs of girth $\\\\geq 2k$. For every $d \\\\geq 3$ and $k \\\\geq 4$, our approximation guarantees are better than those of all other classical and quantum algorithms known to the authors. Our algorithm constructs an explicit vector solution to the standard semidefinite relaxation of MaxCut and applies hyperplane rounding. It may be viewed as a simplification of the previously best known technique, which approximates Gaussian wave processes on the infinite $d$-regular tree.\",\"PeriodicalId\":93491,\"journal\":{\"name\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"volume\":\"17 1\",\"pages\":\"238-246\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611977066.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611977066.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

给出了MaxCut的近似算法,并保证了$d$ -周长为$\geq 2k$的正则图上被切边的平均分数。对于每个$d \geq 3$和$k \geq 4$,我们的近似保证比作者已知的所有其他经典和量子算法更好。我们的算法构造了MaxCut标准半定松弛的显式向量解,并应用超平面舍入。它可以看作是先前最著名的技术的简化,该技术在无限$d$ -正则树上近似高斯波过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An explicit vector algorithm for high-girth MaxCut
We give an approximation algorithm for MaxCut and provide guarantees on the average fraction of edges cut on $d$-regular graphs of girth $\geq 2k$. For every $d \geq 3$ and $k \geq 4$, our approximation guarantees are better than those of all other classical and quantum algorithms known to the authors. Our algorithm constructs an explicit vector solution to the standard semidefinite relaxation of MaxCut and applies hyperplane rounding. It may be viewed as a simplification of the previously best known technique, which approximates Gaussian wave processes on the infinite $d$-regular tree.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信